PIC16F716-I/SO Microchip Technology, PIC16F716-I/SO Datasheet - Page 478

IC PIC MCU FLASH 2KX14 18SOIC

PIC16F716-I/SO

Manufacturer Part Number
PIC16F716-I/SO
Description
IC PIC MCU FLASH 2KX14 18SOIC
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F716-I/SO

Program Memory Type
FLASH
Program Memory Size
3.5KB (2K x 14)
Package / Case
18-SOIC (7.5mm Width)
Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
13
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 4x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
128 B
Interface Type
RS- 232/USB
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
13
Number Of Timers
3
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000
Minimum Operating Temperature
- 40 C
On-chip Adc
4-ch x 8-bit
Package
18SOIC W
Device Core
PIC
Family Name
PIC16
Maximum Speed
20 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT18SO-1 - SOCKET TRANSITION 18SOIC 300MILI3-DB16F716 - BOARD DAUGHTER ICEPIC3AC162054 - HEADER INTERFACE ICD2 16F716AC164010 - MODULE SKT PROMATEII DIP/SOIC
Eeprom Size
-
Connectivity
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F716-I/SO
Manufacturer:
MICROCHI
Quantity:
42
Part Number:
PIC16F716-I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16F716-I/SO
0
Company:
Part Number:
PIC16F716-I/SO
Quantity:
2 000
Company:
Part Number:
PIC16F716-I/SO
Quantity:
1 680
PICmicro MID-RANGE MCU FAMILY
25.11
DS31025A-page 25-20
LCD Voltage Generation
Among the many ways to generate LCD voltage, two methods stand out above the crowd:
• resistor ladder
• charge pump.
The resistor ladder method, shown in
ages. This method uses inexpensive resistors to create the multi-level LCD voltages. Regardless
of the number of pixels that are energized the current remains constant. The voltage at point V3
is typically tied to V
The resistance values are determined by two factors: display quality and power consumption.
Display quality is a function of the LCD drive waveforms. Since the LCD panel is a capacitive
load, the waveform is distorted due to the charging and discharging currents. This distortion can
be reduced by decreasing the value of resistance. However, this change increases the power
consumption due to the increased current now flowing through the resistors. As the LCD panel
increases in size, the resistance value must be decreased to maintain the image quality of the
display.
Sometimes the addition of parallel capacitors to the resistance can reduce the distortion caused
by charging/discharging currents. The capacitors act as charge storage to provide current as the
display waveform transitions. In general, R is 1 k
200 k .
Figure 25-10: Resistor Ladder
Figure 25-11: Resistor Ladder with Capacitors
CC
, either internally or externally.
Figure
V
V
V
V
3
2
1
0
25-10, is most commonly used for higher V
V
V
V
V
3
2
1
0
+5V
to 50 k
R
R
R
and the potentiometer is 5 k
R
R
R
C
C
C
1997 Microchip Technology Inc.
CC
volt-
to

Related parts for PIC16F716-I/SO