74AVCH1T45GW,125 NXP Semiconductors, 74AVCH1T45GW,125 Datasheet

IC TRANSCVR TRI-ST DL SPLY SC88

74AVCH1T45GW,125

Manufacturer Part Number
74AVCH1T45GW,125
Description
IC TRANSCVR TRI-ST DL SPLY SC88
Manufacturer
NXP Semiconductors
Series
74AVCHr
Datasheet

Specifications of 74AVCH1T45GW,125

Output Type
Logic
Package / Case
SC-70-6, SC-88, SOT-363
Logic Function
Translator, Bidirectional, 3-State
Number Of Bits
2
Input Type
Logic
Number Of Channels
2
Number Of Outputs/channel
1
Differential - Input:output
No/No
Propagation Delay (max)
2.7ns
Voltage - Supply
0.8 V ~ 3.6 V
Operating Temperature
-40°C ~ 125°C
Supply Voltage
0.8 V ~ 3.6 V
Logic Family
AVC
Number Of Channels Per Chip
1
Input Level
CMOS
Output Level
CMOS
High Level Output Current
- 12 mA
Low Level Output Current
12 mA
Supply Voltage (max)
3.6 V
Supply Voltage (min)
0.8 V
Maximum Operating Temperature
+ 125 C
Function
Bus Transceiver with Voltage Translation
Input Bias Current (max)
24 uA
Minimum Operating Temperature
- 40 C
Mounting Style
SMD/SMT
Polarity
Non-Inverting
Logic Type
CMOS
Number Of Circuits
1
Data Rate
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Rate
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
74AVCH1T45GW-G
74AVCH1T45GW-G
935284156125
1. General description
2. Features
The 74AVCH1T45 is a single bit, dual supply transceiver that enables bidirectional level
translation. It features two data input-output ports (A and B), a direction control input (DIR)
and dual supply pins (V
voltage between 0.8 V and 3.6 V making the device suitable for translating between any of
the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins A and DIR are
referenced to V
from A to B and a LOW on DIR allows transmission from B to A.
The device is fully specified for partial power-down applications using I
circuitry disables the output, preventing any damaging backflow current through the
device when it is powered down. In suspend mode when either V
GND level, both A and B are in the high-impedance OFF-state.
The 74AVCH1T45 has active bus hold circuitry which is provided to hold unused or
floating data inputs at a valid logic level. This feature eliminates the need for external
pull-up or pull-down resistors.
I
I
I
I
I
74AVCH1T45
Dual supply translating transceiver; 3-state
Rev. 02 — 5 May 2009
Wide supply voltage range:
High noise immunity
Complies with JEDEC standards:
ESD protection:
Maximum data rates:
N
N
N
N
N
N
N
N
N
N
N
N
N
N
V
V
JESD8-12 (0.8 V to 1.3 V)
JESD8-11 (0.9 V to 1.65 V)
JESD8-7 (1.2 V to 1.95 V)
JESD8-5 (1.8 V to 2.7 V)
JESD8-B (2.7 V to 3.6 V)
HBM JESD22-A114E Class 3B exceeds 8000 V
MM JESD22-A115-A exceeds 200 V
CDM JESD22-C101C exceeds 1000 V
500 Mbit/s (1.8 V to 3.3 V translation)
320 Mbit/s (< 1.8 V to 3.3 V translation)
320 Mbit/s (translate to 2.5 V or 1.8 V)
280 Mbit/s (translate to 1.5 V)
CC(A)
CC(B)
: 0.8 V to 3.6 V
: 0.8 V to 3.6 V
CC(A)
and pin B is referenced to V
CC(A)
and V
CC(B)
). Both V
CC(B)
CC(A)
. A HIGH on DIR allows transmission
and V
CC(B)
can be supplied at any
CC(A)
Product data sheet
OFF
or V
. The I
CC(B)
are at
OFF

Related parts for 74AVCH1T45GW,125

74AVCH1T45GW,125 Summary of contents

Page 1

Dual supply translating transceiver; 3-state Rev. 02 — 5 May 2009 1. General description The 74AVCH1T45 is a single bit, dual supply transceiver that enables bidirectional level translation. It features two data input-output ports (A and B), a direction ...

Page 2

... NXP Semiconductors N 240 Mbit/s (translate to 1 Suspend mode I Bus hold on data inputs I Latch-up performance exceeds 100 mA per JESD 78 Class II I Inputs accept voltages Low noise overshoot and undershoot < OFF I Multiple package options I Specified from +85 C and +125 C 3. Ordering information Table 1 ...

Page 3

... NXP Semiconductors 6. Pinning information 6.1 Pinning 74AVCH1T45 1 V CC(A) GND 001aag887 Fig 3. Pin configuration SOT363 6.2 Pin description Table 3. Pin description Symbol Pin V 1 CC(A) GND DIR CC(B) 7. Functional description [1] Table 4. Function table Supply voltage Input DIR CC(A) CC( ...

Page 4

... NXP Semiconductors 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter V supply voltage A CC(A) V supply voltage B CC(B) I input clamping current IK V input voltage I I output clamping current OK V output voltage ...

Page 5

... NXP Semiconductors 10. Static characteristics Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions amb V HIGH-level output V OH voltage V LOW-level output V OL voltage I input leakage DIR input current V I bus hold LOW port; BHL current V I bus hold HIGH port ...

Page 6

... NXP Semiconductors Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions V LOW-level input data input IL voltage DIR input V HIGH-level output V OH voltage V LOW-level output V OL voltage I input leakage DIR input current V I bus hold LOW ...

Page 7

... NXP Semiconductors Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions I bus hold LOW port BHLO overdrive current I bus hold HIGH port BHHO overdrive current I OFF-state output port current V I power-off leakage A port; V OFF current V B port ...

Page 8

... NXP Semiconductors Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions V LOW-level input data input IL voltage DIR input V HIGH-level output V OH voltage V LOW-level output V OL voltage I input leakage DIR input current V I bus hold LOW ...

Page 9

... NXP Semiconductors Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions I bus hold LOW port BHLO overdrive current I bus hold HIGH port BHHO overdrive current I OFF-state output port current V I power-off leakage A port; V OFF current V B port ...

Page 10

... NXP Semiconductors 11. Dynamic characteristics Table 8. Typical dynamic characteristics at V Voltages are referenced to GND (ground = 0 V); for test circuit see Symbol Parameter Conditions t propagation delay disable time DIR to A dis DIR enable time DIR DIR the same as t and PLH PHL ...

Page 11

... NXP Semiconductors Table 11. Dynamic characteristics for temperature range +85 C Voltages are referenced to GND (ground = 0 V); for test circuit see Symbol Parameter Conditions 1.3 V CC(A) t propagation delay disable time DIR to A dis DIR enable time DIR DIR 1 1.6 V CC(A) t propagation delay ...

Page 12

... NXP Semiconductors Table 12. Dynamic characteristics for temperature range +125 C Voltages are referenced to GND (ground = 0 V); for test circuit see Symbol Parameter Conditions 1.3 V CC(A) t propagation delay disable time DIR to A dis DIR enable time DIR DIR 1 1.6 V CC(A) t propagation delay ...

Page 13

... NXP Semiconductors 12. Waveforms Measurement points are given in V and V are typical output voltage drops that occur with the output load Fig 5. The data input ( output (B, A) propagation delay times DIR input output LOW-to-OFF OFF-to-LOW output HIGH-to-OFF OFF-to-HIGH Measurement points are given in ...

Page 14

... NXP Semiconductors Test data is given in Table R = Load resistance Load capacitance including jig and probe capacitance Termination resistance External voltage for measuring switching times. EXT Fig 7. Load circuitry for switching times Table 14. Test data Supply voltage Input [ CC(A) CC( CCI 1. 2.7 V ...

Page 15

... NXP Semiconductors 13. Application information 13.1 Unidirectional logic level-shifting application The circuit given in unidirectional logic level-shifting application. Fig 8. Table 15. Pin 74AVCH1T45_2 Product data sheet Figure example of the 74AVCH1T45 being used in an VCC1 V CC(A) 1 GND 2 VCC1 A 3 system-1 Unidirectional logic level-shifting application Description unidirectional logic level-shifting application ...

Page 16

... NXP Semiconductors 13.2 Bidirectional logic level-shifting application Figure 9 application. Since the device does not have an output enable pin, the system designer should take precautions to avoid bus contention between system-1 and system-2 when changing directions. Fig 9. Table 16 and then from system-2 to system-1. ...

Page 17

... NXP Semiconductors 13.3 Power-up considerations The device is designed such that no special power-up sequence is required other than GND being applied first. Table 17. V CC( 0.8 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V 13.4 Enable times The enable times for the 74AVCH1T45 are calculate from the following formulas: • ...

Page 18

... NXP Semiconductors 14. Package outline Plastic surface-mounted package; 6 leads y 6 pin 1 index DIMENSIONS (mm are the original dimensions UNIT max 0.30 1.1 0.25 mm 0.1 0.20 0.10 0.8 OUTLINE VERSION IEC SOT363 Fig 10. Package outline SOT363 (SC-88) 74AVCH1T45_2 Product data sheet scale 2.2 1.35 2 ...

Page 19

... NXP Semiconductors XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1. (2) terminal 1 index area DIMENSIONS (mm are the original dimensions) ( UNIT b D max max 0.25 1.5 mm 0.5 0.04 0.17 1.4 Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. ...

Page 20

... NXP Semiconductors 15. Abbreviations Table 18. Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal Oxide Semiconductor DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model 16. Revision history Table 19. Revision history Document ID Release date 74AVCH1T45_2 20090505 • Modifications: ...

Page 21

... Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice ...

Page 22

... NXP Semiconductors 19. Contents 1 General description . . . . . . . . . . . . . . . . . . . . . . 1 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 4 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 6 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 6.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 Functional description . . . . . . . . . . . . . . . . . . . 3 8 Limiting values Recommended operating conditions Static characteristics Dynamic characteristics . . . . . . . . . . . . . . . . . 10 12 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 Application information ...

Related keywords