mgsf3441vt1 Freescale Semiconductor, Inc, mgsf3441vt1 Datasheet - Page 5

no-image

mgsf3441vt1

Manufacturer Part Number
mgsf3441vt1
Description
Low Rds On Small-signal Mosfets Tmos Single P=channel Field Effect Transistors , Inc
Manufacturer
Freescale Semiconductor, Inc
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
mgsf3441vt1G
Manufacturer:
ON/安森美
Quantity:
20 000
design. The footprint for the semiconductor packages must
be the correct size to insure proper solder connection
drain pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power dissipation.
Power dissipation for a surface mount device is determined
by T J(max) , the maximum rated junction temperature of the
die, R JA , the thermal resistance from the device junction to
ambient, and the operating temperature, T A . Using the
values provided on the data sheet for the TSOP–6 package,
P D can be calculated as follows:
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature T A of 25°C, one can
calculate the power dissipation of the device which in this
case is 2.0 watts.
of the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 2.0 watts. There are
other alternatives to achieving higher power dissipation from
the TSOP–6 package. Another alternative would be to use a
ceramic substrate or an aluminum core board such as
Thermal Clad™. Using a board material such as Thermal
Clad, an aluminum core board, the power dissipation can be
doubled using the same footprint.
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Surface mount board layout is a critical portion of the total
The power dissipation of the TSOP–6 is a function of the
The values for the equation are found in the maximum
The 128°C/W for the TSOP–6 package assumes the use
P D =
INFORMATION FOR USING THE TSOP–6 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
P D =
150°C – 25°C
128°C/W
T J(max) – T A
R JA
= 2.0 watts
0.074
1.9
0.037
0.037
0.95
0.95
TSOP–6 POWER DISSIPATION
TSOP–6
0.094
2.4
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
* Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.
0.039
The melting temperature of solder is higher than the rated
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference shall be a maximum of 10°C.
The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient shall be 5°C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling.
1.0
SOLDERING PRECAUTIONS
0.028
inches
0.7
mm
MGSF3441VT1
5

Related parts for mgsf3441vt1