ADSP-21375KSZ-2B Analog Devices Inc, ADSP-21375KSZ-2B Datasheet - Page 11

no-image

ADSP-21375KSZ-2B

Manufacturer Part Number
ADSP-21375KSZ-2B
Description
IC DSP 32BIT 266MHZ 208-MQFP
Manufacturer
Analog Devices Inc
Series
SHARC®r
Type
Floating Pointr
Datasheet

Specifications of ADSP-21375KSZ-2B

Interface
DAI, DPI
Clock Rate
266MHz
Non-volatile Memory
ROM (256 kB)
On-chip Ram
64kB
Voltage - I/o
3.30V
Voltage - Core
1.20V
Operating Temperature
0°C ~ 70°C
Mounting Type
Surface Mount
Package / Case
208-MQFP, 208-PQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
SYSTEM DESIGN
The following sections provide an introduction to system design
options and power supply issues.
Program Booting
The internal memory of the ADSP-21371/ADSP-21375 boots at
system power-up from an 8-bit EPROM via the external port, an
SPI master, or an SPI slave. Booting is determined by the boot
configuration (BOOTCFG1–0) pins (see
Selection of the boot source is controlled via the SPI as either a
master or slave device, or it can immediately begin executing
from ROM.
The newly introduced “Running Reset” feature allows a user to
perform a reset of the processor core and peripherals, but with-
out resetting the PLL and SDRAM controller, or performing a
Boot. The functionality of the CLKOUT/RESETOUT/
RUNRSTIN pin has now been extended to also act as the input
for initiating a Running Reset.
Power Supplies
The ADSP-21371/ADSP-21375 processors have separate power
supply connections for the internal (V
(V
1.2 V requirement. The external supply must meet the 3.3 V
requirement. All external supply pins must be connected to the
same power supply.
Target Board JTAG Emulator Connector
Analog Devices DSP Tools product line of JTAG emulators uses
the IEEE 1149.1 JTAG test access port of the ADSP-21371/
ADSP-21375 processors to monitor and control the target board
processor during emulation. Analog Devices DSP Tools product
line of JTAG emulators provides emulation at full processor
speed, allowing inspection and modification of memory, regis-
ters, and processor stacks. The processor’s JTAG interface
ensures that the emulator will not affect target system loading
or timing.
For complete information on Analog Devices’ SHARC DSP
Tools product line of JTAG emulator operation, see the appro-
priate “Emulator Hardware User’s Guide”.
DEVELOPMENT TOOLS
The ADSP-21371/ADSP-21375 processors are supported with a
complete set of CROSSCORE
ment tools, including Analog Devices emulators and
VisualDSP++
hardware that supports other SHARC processors also fully emu-
lates the ADSP-21371/ADSP-21375.
The VisualDSP++ project management environment lets pro-
grammers develop and debug an application. This environment
includes an easy to use assembler (which is based on an alge-
braic syntax), an archiver (librarian/library builder), a linker, a
loader, a cycle-accurate instruction-level simulator, a C/C++
compiler, and a C/C++ runtime library that includes DSP and
mathematical functions. A key point for these tools is C/C++
code efficiency. The compiler has been developed for efficient
DDEXT
) power supplies. The internal supplies must meet the
®
development environment. The same emulator
®
software and hardware develop-
DDINT
Table 9 on Page
), and external
Rev. B | Page 11 of 52 | June 2008
15).
translation of C/C++ code to DSP assembly. The SHARC has
architectural features that improve the efficiency of compiled
C/C++ code.
The VisualDSP++ debugger has a number of important fea-
tures. Data visualization is enhanced by a plotting package that
offers a significant level of flexibility. This graphical representa-
tion of user data enables the programmer to quickly determine
the performance of an algorithm. As algorithms grow in com-
plexity, this capability can have increasing significance on the
designer’s development schedule, increasing productivity. Sta-
tistical profiling enables the programmer to nonintrusively poll
the processor as it is running the program. This feature, unique
to VisualDSP++, enables the software developer to passively
gather important code execution metrics without interrupting
the real-time characteristics of the program. Essentially, the
developer can identify bottlenecks in software quickly and effi-
ciently. By using the profiler, the programmer can focus on
those areas in the program that impact performance and take
corrective action.
Debugging both C/C++ and assembly programs with the
VisualDSP++ debugger, programmers can
The VisualDSP++ IDDE lets programmers define and manage
DSP software development. Its dialog boxes and property pages
let programmers configure and manage all of the SHARC devel-
opment tools, including the color syntax highlighting in the
VisualDSP++ editor. This capability permits programmers to
The VisualDSP++ Kernel (VDK) incorporates scheduling and
resource management tailored specifically to address the mem-
ory and timing constraints of DSP programming. These
capabilities enable engineers to develop code more effectively,
eliminating the need to start from the very beginning, when
developing new application code. The VDK features include
threads, critical and unscheduled regions, semaphores, events,
and device flags. The VDK also supports priority-based, pre-
emptive, cooperative, and time-sliced scheduling approaches. In
addition, the VDK was designed to be scalable. If the application
does not use a specific feature, the support code for that feature
is excluded from the target system.
• View mixed C/C++ and assembly code (interleaved source
• Insert breakpoints
• Set conditional breakpoints on registers, memory,
• Perform linear or statistical profiling of program execution
• Fill, dump, and graphically plot the contents of memory
• Perform source level debugging
• Create custom debugger windows
• Control how the development tools process inputs and
• Maintain a one-to-one correspondence with the tool’s
and object information)
and stacks
generate outputs
command line switches
ADSP-21371/ADSP-21375

Related parts for ADSP-21375KSZ-2B