PIC16F877-20/P Microchip Technology, PIC16F877-20/P Datasheet - Page 408

IC MCU FLASH 8KX14 EE 40DIP

PIC16F877-20/P

Manufacturer Part Number
PIC16F877-20/P
Description
IC MCU FLASH 8KX14 EE 40DIP
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F877-20/P

Core Size
8-Bit
Program Memory Size
14KB (8K x 14)
Core Processor
PIC
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
33
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
External
Operating Temperature
0°C ~ 70°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC16F
No. Of I/o's
33
Eeprom Memory Size
256Byte
Ram Memory Size
368Byte
Cpu Speed
20MHz
No. Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
444-1001 - DEMO BOARD FOR PICMICRO MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F877-20/P
Manufacturer:
MICROCHIP
Quantity:
510
Part Number:
PIC16F877-20/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16F877-20/PQ
Manufacturer:
LT
Quantity:
1 944
Part Number:
PIC16F877-20/PQ
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F877-20/PT
Manufacturer:
NUVOTON
Quantity:
5 600
Part Number:
PIC16F877-20/PT
Manufacturer:
Microchip Technology
Quantity:
1 820
Part Number:
PIC16F877-20/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F877-20/PT
Manufacturer:
MIC
Quantity:
20 000
Part Number:
PIC16F877-20/PT
0
PICmicro MID-RANGE MCU FAMILY
22.3
DS31022A-page 22-6
A/D Acquisition Requirements
For the A/D converter to meet its specified accuracy, the charge holding capacitor (C
be allowed to fully charge to the input channel voltage level. The analog input model is shown in
Figure
directly affect the time required to charge the capacitor C
ance varies over the device voltage (V
impedance for analog sources is 10 k . After the analog input channel is selected (changed)
this acquisition must be done before the conversion can be started.
To calculate the minimum acquisition time,
that 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed
for the A/D to meet its specified resolution.
Equation 22-1:Acquisition Time
Equation 22-2:A/D Minimum Charging Time
Example 22-1
lation is based on the following system assumptions.
Rs
Conversion Error
V
Temperature
V
Example 22-1:
T
V
or
Tc
T
T
T
T
DD
HOLD
ACQ
ACQ
ACQ
C
ACQ
HOLD
=
22-3. The source impedance (R
=
=
=
=
=
=
=
Amplifier Settling Time +
Holding Capacitor Charging Time +
Temperature Coefficient
T
T
5 s + Tc + [(Temp - 25 C)(0.05 s/ C)]
-C
-51.2 pF (1 k + 7 k + 10 k ) ln(0.0020)
-51.2 pF (18 k ) ln(0.0020)
-0.921 s (-6.2146)
5.724 s
5 s + 5.724 s + [(50 C - 25 C)(0.05 s/ C)]
10.724 s + 1.25 s
11.974 s
(V
-(51.2 pF)(1 k + R
shows the calculation of the minimum required acquisition time T
AMP
AMP
HOLD
REF
Calculating the Minimum Required Acquisition Time
+ T
+ T
- (V
(R
=
=
=
=
C
C
IC
REF
+ T
+ T
+ R
/512)) • (1 - e
COFF
COFF
10 k
1/2 LSb
5V
50 C (system max.)
0V @ time = 0
SS
+ R
SS
Rss = 7 k
+ R
S
) ln(1/512)
S
DD
) and the internal sampling switch (R
S
) ln(1/511)
(-Tc/C
Equation 22-1
), see
HOLD
Figure
(R
IC
HOLD
(see graph in
+ R
22-3. The maximum recommended
may be used. This equation assumes
SS
. The sampling switch (R
+ R
S
))
1997 Microchip Technology Inc.
)
Figure
22-3)
ACQ
SS
) impedance
. This calcu-
HOLD
SS
) imped-
) must

Related parts for PIC16F877-20/P