ATMEGA169 ATMEL [ATMEL Corporation], ATMEGA169 Datasheet - Page 140

no-image

ATMEGA169

Manufacturer Part Number
ATMEGA169
Description
8-bit Microcontroller with 16K Bytes In-System Programmable Flash
Manufacturer
ATMEL [ATMEL Corporation]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA169-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169-16AI SL709
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169-16AI SL710
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169P-15AT
Manufacturer:
PANASONIC
Quantity:
301
Part Number:
ATMEGA169P-15AT
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA169P-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA169PA-MU
Manufacturer:
ATMEL
Quantity:
31
Part Number:
ATMEGA169PAAU
Manufacturer:
INF
Quantity:
4 275
Timer/Counter2 Interrupt
Mask Register – TIMSK2
140
ATmega169/V
• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable
When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one),
the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is
set in the Timer/Counter 2 Interrupt Flag Register – TIFR2.
• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the
Timer/Counter2 Interrupt Flag Register – TIFR2.
Bit
Read/Write
Initial Value
Description of wake up from Power-save or ADC Noise Reduction mode when the
timer is clocked asynchronously: When the interrupt condition is met, the wake up
process is started on the following cycle of the timer clock, that is, the timer is
always advanced by at least one before the processor can read the counter value.
After wake-up, the MCU is halted for four cycles, it executes the interrupt routine,
and resumes execution from the instruction following SLEEP.
Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading
TCNT2 must be done through a register synchronized to the internal I/O clock
domain. Synchronization takes place for every rising TOSC1 edge. When waking up
from Power-save mode, and the I/O clock (clk
read as the previous value (before entering sleep) until the next rising TOSC1 edge.
The phase of the TOSC clock after waking up from Power-save mode is essentially
unpredictable, as it depends on the wake-up time. The recommended procedure for
reading TCNT2 is thus as follows:
1. Write any value to either of the registers OCR2A or TCCR2A.
2. Wait for the corresponding Update Busy Flag to be cleared.
3. Read TCNT2.
During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is
therefore advanced by at least one before the processor can read the timer value
causing the setting of the Interrupt Flag. The Output Compare pin is changed on the
timer clock and is not synchronized to the processor clock.
R
7
0
R
6
0
R
5
0
R
4
0
R
3
0
I/O
) again becomes active, TCNT2 will
R
2
0
OCIE2A
R/W
1
0
TOIE2
R/W
0
0
2514P–AVR–07/06
TIMSK2

Related parts for ATMEGA169