ADM1066 Analog Devices, ADM1066 Datasheet - Page 14

no-image

ADM1066

Manufacturer Part Number
ADM1066
Description
Manufacturer
Analog Devices
Datasheet

Specifications of ADM1066

# Supplies Monitored
12
Volt Monitoring Accuracy
1%
# Output Drivers
10
Fet Drive/enable Output
Both
Voltage Readback
12-bit ADC
Supply Adj/margining
12-bit ADC+6 DACs
Package
40 ld LFCSP ,48 ld TQFP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADM1066
Manufacturer:
AD
Quantity:
1 045
Part Number:
ADM1066ACP
Manufacturer:
AD
Quantity:
974
Part Number:
ADM1066ACPZ
Manufacturer:
ADI
Quantity:
477
Part Number:
ADM1066ACPZ
Manufacturer:
AD
Quantity:
2 804
Part Number:
ADM1066ACPZ
Manufacturer:
ICS
Quantity:
797
Part Number:
ADM1066ACPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Company:
Part Number:
ADM1066ACPZ
Quantity:
1 400
Company:
Part Number:
ADM1066ACPZ
Quantity:
1 400
Part Number:
ADM1066ACPZ-REEL7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADM1066ASUZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADM1066ASUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADM1066ASUZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADM1066ASUZ-REEL7
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADM1066ASUZ-REEL7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Company:
Part Number:
ADM1066ASUZ-REEL7
Quantity:
500
ADM1066
POWERING THE ADM1066
The ADM1066 is powered from the highest voltage input on
either the positive-only supply inputs (VPx) or the high voltage
supply input (VH). This technique offers improved redundancy
because the device is not dependent on any particular voltage rail
to keep it operational. The same pins are used for supply fault
detection (see the Supply Supervision section). A V
on the device chooses which supply to use. The arbitrator can
be considered an OR’ing of five low dropout regulators (LDOs)
together. A supply comparator chooses the highest input to provide
the on-chip supply. There is minimal switching loss with this
architecture (~0.2 V), resulting in the ability to power the
ADM1066 from a supply as low as 3.0 V. Note that the supply on
the VXx pins cannot be used to power the device.
An external capacitor to GND is required to decouple the on-chip
supply from noise. This capacitor should be connected to the
VDDCAP pin, as shown in Figure 21. The capacitor has another
use during brownouts (momentary loss of power). Under these
conditions, when the input supply (VPx or VH) dips transiently
below V
off so that it does not pull V
then act as a reservoir to keep the device active until the next
highest supply takes over the powering of the device. A 10 μF
capacitor is recommended for this reservoir/decoupling function.
The VH input pin can accommodate supplies up to 14.4 V, which
allows the ADM1066 to be powered using a 12 V backplane supply.
In cases where this 12 V supply is hot swapped it is recommended
that the ADM1066 not be connected directly to the supply. Suitable
precautions, such as the use of a hot swap controller, should be
taken to protect the device from transients that could cause
damage during hot swap events.
DD
, the synchronous rectifier switch immediately turns
DD
down. The V
DD
capacitor can
DD
arbitrator
Rev. E | Page 14 of 32
When two or more supplies are within 100 mV of each other,
the supply that first takes control of V
example, if VP1 is connected to a 3.3 V supply, V
to approximately 3.1 V through VP1. If VP2 is then connected to
another 3.3 V supply, VP1 still powers the device, unless VP2
goes 100 mV higher than VP1.
VP1
VP2
VP3
VP4
VH
Figure 21. V
COMPARATOR
SUPPLY
DD
Arbitrator Operation
DD
IN
EN
IN
EN
IN
EN
IN
EN
IN
EN
keeps control. For
4.75V
4.75V
4.75V
4.75V
4.75V
LDO
LDO
LDO
LDO
LDO
OUT
OUT
OUT
OUT
OUT
DD
VDDCAP
powers up
INTERNAL
DEVICE
SUPPLY

Related parts for ADM1066