AD9117-DPG2-EBZ Analog Devices Inc, AD9117-DPG2-EBZ Datasheet - Page 44

no-image

AD9117-DPG2-EBZ

Manufacturer Part Number
AD9117-DPG2-EBZ
Description
Dual 14B, Low Power D-A Converter
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD9117-DPG2-EBZ

Lead Free Status / RoHS Status
Lead free / RoHS Compliant
AD9114/AD9115/AD9116/AD9117
or
A differential pair (IOUTP/IOUTN or QOUTP/QOUTN)
typically drives a resistive load directly or via a transformer. If
dc coupling is required, the differential pair (IOUTP/IOUTN or
QOUTP/QOUTN) should be connected to matching resistive
loads, xR
ended voltage output appearing at the positive and negative nodes is
To achieve the maximum output compliance of 1 V at the nominal
20 mA output current, IR
Substituting the values of IOUTP, IOUTN, I
be expressed as
Equation 8 highlights some of the advantages of operating the
AD9114/AD9115/AD9116/AD9117 differentially. First, the
differential operation helps cancel common-mode error sources
associated with IOUTP and IOUTN, such as noise, distortion,
and dc offsets. Second, the differential code-dependent current and
subsequent voltage, V
voltage output (that is, V
signal power to the load. Note that the gain drift temperature
performance for a single-ended output (V
differential output of the AD9114/AD9115/AD9116/ AD9117
can be enhanced by selecting temperature tracking resistors for
xR
shown in Equation 8.
ANALOG OUTPUT
The complementary current outputs in each DAC, IOUTP/
IOUTN and QOUTP/QOUTN, can be configured for single-
ended or differential operation. IOUTP/IOUTN and QOUTP/
QOUTN can be converted into complementary single-ended
voltage outputs, V
a load resistor, xR
section by Equation 6 through Equation 8. The differential
voltages, V
and V
voltage via a transformer or a differential amplifier configuration.
The ac performance of the AD9114/AD9115/AD9116/AD9117 is
optimum and is specified using a differential transformer-coupled
output in which the voltage swing at IOUTP and IOUTN is
limited to ±0.5 V. The distortion and noise performance of the
AD9114/AD9115/AD9116/AD9117 can be enhanced when it is
configured for differential operation. The common-mode error
sources of both IOUTP/IOUTN and QOUTP/QOUTN can be
LOAD
I
I
V
V
V
V
V
(32 × V
IOUTFS
QOUTFS
QOUTP
IOUTP
QOUTP
IOUTN
QOUTN
IDIFF
and xR
LOAD
= {(2 × IDAC CODE − (2
IDIFF
= 32 × V
= IOUTP × IR
= 32 × V
= IOUTN × IR
and V
= QOUTP × QR
= QOUTN × QR
, that are tied to analog common, AVSS. The single-
REFIO
SET
and V
/IR
LOAD
because of their ratiometric relationship, as
IOUTP
QOUTN
SET
REFIO
REFIO
, as described in the DAC Transfer Function
IDIFF
QDIFF
and V
) × IR
, can also be converted to a single-ended
IOUTP
/IR
, is twice the value of the single-ended
/QR
, existing between V
LOAD
LOAD
LOAD
SET
LOAD
IOUTN
LOAD
or V
SET
LOAD
= QR
IOUTB
as well as V
N
LOAD
− 1))/2
), thus providing twice the
must be set to 50 Ω.
IOUTP
N
QOUTP
} ×
xREF
IOUTP
and V
, and V
and V
and V
IOUTN
IDIFF
QOUTN
IOUTN
) or
can
via
Rev. A | Page 44 of 80
,
(5)
(6)
(7)
(8)
significantly reduced by the common-mode rejection of a
transformer or differential amplifier. These common-mode error
sources include even-order distortion products and noise.
The enhancement in distortion performance becomes more
significant as the frequency content of the reconstructed waveform
increases and/or its amplitude increases. This is due to the first-
order cancellation of various dynamic common-mode distortion
mechanisms, digital feedthrough, and noise. Performing a
differential-to-single-ended conversion via a transformer also
provides the ability to deliver twice the reconstructed signal
power to the load (assuming no source termination). Because
the output currents of IOUTP/IOUTN and QOUTP/QOUTN
are complementary, they become additive when processed
differentially.
SELF-CALIBRATION
The AD9114/AD9115/AD9116/AD9117 have a self-calibration
feature that improves the DNL of the device. Performing a self-
calibration on the device improves device performance in low
frequency applications. The device performance in applications
where the analog output frequencies are above 5 MHz are generally
influenced more by dynamic device behavior than by DNL and,
in these cases, self-calibration is unlikely to produce measurable
benefits. The calibration clock frequency is equal to the DAC clock
divided by the division factor chosen by the DIVSEL value. Each
calibration clock cycle is between 32 and 2048 DAC input clock
cycles, depending on the value of DIVSEL[2:0] (Register 0x0E,
Bits[2:0]). The frequency of the calibration clock should be
between 0.5 MHz and 4 MHz for reliable calibrations. Best results
are obtained by setting DIVSEL[2:0] to produce a calibration
clock frequency between these values. Separate self-calibration
hardware is included for each DAC. The DACs can be self-
calibrated individually or simultaneously.
To perform a device self-calibration, use the following procedure:
1.
2.
3.
4.
5.
6.
7.
Write 0x00 to Register 0x12. This ensures that the UNCALI
and UNCALQ bits (Bit 1 and Bit 0) are reset.
Set up a calibration clock between 0.5 MHz and 4 MHz
using DIVSEL[2:0], and then enable the calibration clock
by setting the CALCLK bit (Register 0x0E, Bit 3).
Select the DAC(s) to self-calibrate by setting either Bit 4
(CALSELI) for the I DAC and/or Bit 5 (CALSELQ) for
the Q DAC in Register 0x0E. Note that each DAC contains
independent calibration hardware so that they can be
calibrated simultaneously.
Start self-calibration by setting Bit 4 (CALEN) in Register 0x12.
Wait approximately 300 calibration clock cycles.
Check if the self-calibration has completed by reading
Bit 6 (CALSTATI) and Bit 7 (CALSTATQ) in Register 0x0F.
Logic 1 indicates that the calibration has completed.
When the self-calibration has completed, write 0x00 to
Register 0x12.
Disable the calibration clock by clearing Bit 3 (CALCLK)
in Register 0x0E.

Related parts for AD9117-DPG2-EBZ