PIC18F2550-I/SP Microchip Technology, PIC18F2550-I/SP Datasheet - Page 33

IC PIC MCU FLASH 16KX16 28DIP

PIC18F2550-I/SP

Manufacturer Part Number
PIC18F2550-I/SP
Description
IC PIC MCU FLASH 16KX16 28DIP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2550-I/SP

Program Memory Type
FLASH
Program Memory Size
32KB (16K x 16)
Package / Case
28-DIP (0.300", 7.62mm)
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
24
Eeprom Size
256 x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
1536 B
Interface Type
SPI, I2C, EAUSART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
24
Number Of Timers
4
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DM163025, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 10 Channel
Package
28SPDIP
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
I3-DB18F4550 - BOARD DAUGHTER ICEPIC3DM163025 - PIC DEM FULL SPEED USB DEMO BRDDVA18XP280 - DEVICE ADAPTER 18F2220 PDIP 28LD
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2550-I/SP
Manufacturer:
MICROCHIP
Quantity:
2 100
2.4
Like
PIC18F2455/2550/4455/4550 family includes a feature
that allows the device clock source to be switched from
the main oscillator to an alternate low-frequency clock
source. PIC18F2455/2550/4455/4550 devices offer
two alternate clock sources. When an alternate clock
source is enabled, the various power-managed
operating modes are available.
Essentially, there are three clock sources for these
devices:
• Primary oscillators
• Secondary oscillators
• Internal oscillator block
The primary oscillators include the External Crystal
and Resonator modes, the External Clock modes and
the internal oscillator block. The particular mode is
defined by the FOSC3:FOSC0 Configuration bits. The
details of these modes are covered earlier in this
chapter.
The secondary oscillators are those external sources
not connected to the OSC1 or OSC2 pins. These
sources may continue to operate even after the
controller is placed in a power-managed mode.
PIC18F2455/2550/4455/4550 devices offer the Timer1
oscillator as a secondary oscillator. This oscillator, in all
power-managed modes, is often the time base for
functions such as a Real-Time Clock. Most often, a
32.768 kHz watch crystal is connected between the
RC0/T1OSO/T13CKI and RC1/T1OSI/UOE pins. Like
the XT and HS oscillator mode circuits, loading
capacitors are also connected from each pin to ground.
The Timer1 oscillator is discussed in greater detail in
Section 12.3 “Timer1 Oscillator”.
In addition to being a primary clock source, the internal
oscillator block is available as a power-managed
mode clock source. The INTRC source is also used as
the clock source for several special features, such as
the WDT and Fail-Safe Clock Monitor.
2.4.1
The OSCCON register (Register 2-2) controls several
aspects of the device clock’s operation, both in full
power operation and in power-managed modes.
The System Clock Select bits, SCS1:SCS0, select the
clock source. The available clock sources are the
primary clock (defined by the FOSC3:FOSC0 Configu-
ration bits), the secondary clock (Timer1 oscillator) and
the internal oscillator block. The clock source changes
immediately after one or more of the bits is written to,
following a brief clock transition interval. The SCS bits
are cleared on all forms of Reset.
© 2006 Microchip Technology Inc.
previous
Clock Sources and Oscillator
Switching
OSCILLATOR CONTROL REGISTER
PIC18
enhanced
devices,
PIC18F2455/2550/4455/4550
Preliminary
the
The
IRCF2:IRCF0, select the frequency output of the internal
oscillator block to drive the device clock. The choices are
the INTRC source, the INTOSC source (8 MHz) or one
of the frequencies derived from the INTOSC postscaler
(31 kHz to 4 MHz). If the internal oscillator block is
supplying the device clock, changing the states of these
bits will have an immediate change on the internal oscil-
lator’s output. On device Resets, the default output
frequency of the internal oscillator block is set at 1 MHz.
When an output frequency of 31 kHz is selected
(IRCF2:IRCF0 = 000), users may choose which inter-
nal oscillator acts as the source. This is done with the
INTSRC bit in the OSCTUNE register (OSCTUNE<7>).
Setting this bit selects INTOSC as a 31.25 kHz clock
source by enabling the divide-by-256 output of the
INTOSC postscaler. Clearing INTSRC selects INTRC
(nominally 31 kHz) as the clock source.
This option allows users to select the tunable and more
precise INTOSC as a clock source, while maintaining
power savings with a very low clock speed. Regardless
of the setting of INTSRC, INTRC always remains the
clock source for features such as the Watchdog Timer
and the Fail-Safe Clock Monitor.
The OSTS, IOFS and T1RUN bits indicate which clock
source is currently providing the device clock. The OSTS
bit indicates that the Oscillator Start-up Timer has timed
out and the primary clock is providing the device clock in
primary clock modes. The IOFS bit indicates when the
internal oscillator block has stabilized and is providing
the device clock in RC Clock modes. The T1RUN bit
(T1CON<6>) indicates when the Timer1 oscillator is
providing the device clock in secondary clock modes. In
power-managed modes, only one of these three bits will
be set at any time. If none of these bits are set, the
INTRC is providing the clock or the internal oscillator
block has just started and is not yet stable.
The IDLEN bit determines if the device goes into Sleep
mode, or one of the Idle modes, when the SLEEP
instruction is executed.
The use of the flag and control bits in the OSCCON
register is discussed in more detail in Section 3.0
“Power-Managed Modes”.
Note 1: The Timer1 oscillator must be enabled to
Internal
2: It is recommended that the Timer1
select the secondary clock source. The
Timer1 oscillator is enabled by setting the
T1OSCEN bit in the Timer1 Control regis-
ter (T1CON<3>). If the Timer1 oscillator is
not enabled, then any attempt to select a
secondary clock source will be ignored.
oscillator be operating and stable prior to
switching to it as the clock source; other-
wise, a very long delay may occur while
the Timer1 oscillator starts.
Oscillator
Frequency
DS39632C-page 31
Select
bits,

Related parts for PIC18F2550-I/SP