PIC18F47J13-I/ML Microchip Technology, PIC18F47J13-I/ML Datasheet - Page 403

IC PIC MCU 128KB FLASH 44QFN

PIC18F47J13-I/ML

Manufacturer Part Number
PIC18F47J13-I/ML
Description
IC PIC MCU 128KB FLASH 44QFN
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F47J13-I/ML

Core Size
8-Bit
Program Memory Size
128KB (64K x 16)
Core Processor
PIC
Speed
48MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
34
Program Memory Type
FLASH
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2.15 V ~ 3.6 V
Data Converters
A/D 13x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Controller Family/series
PIC18
Cpu Speed
48MHz
Digital Ic Case Style
QFN
Supply Voltage Range
1.8V To 5.5V
Embedded Interface Type
I2C, SPI, USART
Rohs Compliant
Yes
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
I2C, SPI, EUSART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
25
Number Of Timers
8
Operating Supply Voltage
2 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
DM164128, DM180021, DM183026-2, DV164131, MA180030, DM183022, DM183032, DV164136, MA180024
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 13 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
MA180030 - BOARD DEMO PIC18F47J13 FS USBMA180029 - BOARD DEMO PIC18F47J53 FS USB
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
26.3.2
There is a small amount of capacitance from the inter-
nal A/D Converter sample capacitor as well as stray
capacitance from the circuit board traces and pads that
affect the precision of capacitance measurements. A
measurement of the stray capacitance can be taken by
making sure the desired capacitance to be measured
has been removed. The measurement is then
performed using the following steps:
1.
2.
3.
4.
5.
6.
where I is known from the current source measurement
step, t is a fixed delay and V is measured by performing
an A/D conversion.
 2010 Microchip Technology Inc.
Initialize the A/D Converter and the CTMU.
Set EDG1STAT (= 1).
Wait for a fixed delay of time, t.
Clear EDG1STAT.
Perform an A/D conversion.
Calculate the stray and A/D sample capacitances:
C
OFFSET
CAPACITANCE CALIBRATION
=
C
STRAY
+
C
AD
=
I t 
 V 
Preliminary
PIC18F47J13 FAMILY
This measured value is then stored and used for
calculations of time measurement or subtracted for
capacitance measurement. For calibration, it is
expected that the capacitance of C
approximately known. C
An iterative process may need to be used to adjust the
time, t, that the circuit is charged to obtain a reasonable
voltage reading from the A/D Converter. The value of t
may be determined by setting C
value, then solving for t. For example, if C
theoretically calculated to be 11 pF, and V is expected
to be 70% of V
or 63 s.
See Example 26-3 for a typical routine for CTMU
capacitance calibration.
(4 pF + 11 pF) • 2.31V/0.55 A
DD
or 2.31V, then t would be:
AD
is approximately 4 pF.
OFFSET
DS39974A-page 403
STRAY
to a theoretical
+ C
STRAY
AD
is
is

Related parts for PIC18F47J13-I/ML