DSPIC30F1010-30I/SO Microchip Technology, DSPIC30F1010-30I/SO Datasheet - Page 36

IC DSPIC MCU/DSP 6K 28SOIC

DSPIC30F1010-30I/SO

Manufacturer Part Number
DSPIC30F1010-30I/SO
Description
IC DSPIC MCU/DSP 6K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F1010-30I/SO

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
6KB (2K x 24)
Program Memory Type
FLASH
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM240002, DM300023, DM330011
Package
28SOIC W
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
6-chx10-bit
Number Of Timers
2
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300023 - KIT DEMO DSPICDEM SMPS BUCKDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F1010-30I/SO
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
DSPIC30F1010-30I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
DSPIC30F1010-30I/SO
Quantity:
55
dsPIC30F4011/4012
4.1.3
Move instructions and the DSP accumulator class of
instructions provide a greater degree of addressing
flexibility than other instructions. In addition to the
addressing modes supported by most MCU instruc-
tions, move and accumulator instructions also support
Register Indirect with Register Offset Addressing
mode, also referred to as Register Indexed mode.
In summary, the following addressing modes are
supported by move and accumulator instructions:
• Register Direct
• Register Indirect
• Register Indirect Post-Modified
• Register Indirect Pre-Modified
• Register Indirect with Register Offset (Indexed)
• Register Indirect with Literal Offset
• 8-bit Literal
• 16-bit Literal
4.1.4
The dual source operand DSP instructions (CLR, ED,
EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also
referred to as MAC instructions, utilize a simplified set of
addressing modes to allow the user to effectively
manipulate the Data Pointers through register indirect
tables.
The two source operand prefetch registers must be
members of the set {W8, W9, W10, W11}. For data
reads, W8 and W9 will always be directed to the X
RAGU, and W10 and W11 will always be directed to the
Y AGU. The Effective Addresses (EA) generated
(before and after modification) must, therefore, be valid
addresses within X data space for W8 and W9, and Y
data space for W10 and W11.
DS70135E-page 34
Note:
Note:
Note:
MOVE AND ACCUMULATOR
INSTRUCTIONS
For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA.
However, the 4-bit Wb (register offset) field
is shared between both source and
destination (but typically only used by one).
Not all instructions support all the address-
ing
instructions may support different subsets
of these addressing modes.
MAC INSTRUCTIONS
Register Indirect with Register Offset
Addressing is only available for W9 (in X
data space) and W11 (in Y data space).
modes
given
above.
Individual
In summary, the following addressing modes are
supported by the MAC class of instructions:
• Register Indirect
• Register Indirect Post-Modified by 2
• Register Indirect Post-Modified by 4
• Register Indirect Post-Modified by 6
• Register Indirect with Register Offset (Indexed)
4.1.5
Besides the various addressing modes outlined above,
some instructions use literal constants of various sizes.
For example, BRA (branch) instructions use 16-bit
signed literals to specify the branch destination directly,
whereas the DISI instruction uses a 14-bit unsigned
literal field. In some instructions, such as ADD Acc, the
source of an operand or result is implied by the opcode
itself. Certain operations, such as NOP, do not have any
operands.
4.2
Modulo Addressing is a method of providing an auto-
mated means to support circular data buffers using
hardware. The objective is to remove the need for soft-
ware to perform data address boundary checks when
executing tightly looped code, as is typical in many
DSP algorithms.
Modulo Addressing can operate in either data or pro-
gram space (since the Data Pointer mechanism is
essentially the same for both). One circular buffer can be
supported in each of the X (which also provides the
pointers into program space) and Y data spaces. Modulo
Addressing can operate on any W register pointer. How-
ever, it is not advisable to use W14 or W15 for Modulo
Addressing, since these two registers are used as the
Stack Frame Pointer and Stack Pointer, respectively.
In general, any particular circular buffer can only be
configured to operate in one direction, as there are
certain restrictions on the buffer start address (for incre-
menting buffers) or end address (for decrementing
buffers) based upon the direction of the buffer.
The only exception to the usage restrictions is for buff-
ers which have a power-of-2 length. As these buffers
satisfy the start and end address criteria, they may
operate in a Bidirectional mode (i.e., address boundary
checks will be performed on both the lower and upper
address boundaries).
Modulo Addressing
OTHER INSTRUCTIONS
© 2007 Microchip Technology Inc.

Related parts for DSPIC30F1010-30I/SO