DSPIC30F1010-30I/SO Microchip Technology, DSPIC30F1010-30I/SO Datasheet - Page 128

IC DSPIC MCU/DSP 6K 28SOIC

DSPIC30F1010-30I/SO

Manufacturer Part Number
DSPIC30F1010-30I/SO
Description
IC DSPIC MCU/DSP 6K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F1010-30I/SO

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
6KB (2K x 24)
Program Memory Type
FLASH
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM240002, DM300023, DM330011
Package
28SOIC W
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
6-chx10-bit
Number Of Timers
2
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300023 - KIT DEMO DSPICDEM SMPS BUCKDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F1010-30I/SO
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
DSPIC30F1010-30I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
DSPIC30F1010-30I/SO
Quantity:
55
dsPIC30F4011/4012
19.4
19.4.1
The CAN bus module has 3 receive buffers. However,
one of the receive buffers is always committed to mon-
itoring the bus for incoming messages. This buffer is
called the message assembly buffer (MAB). There are
two receive buffers, visibly denoted as RXB0 and
RXB1, that can essentially instantaneously receive a
complete message from the protocol engine.
All messages are assembled by the MAB, and are
transferred to the RXBn buffers only if the acceptance
filter criterion is met. When a message is received, the
RXxIF flag (C1INTF<0> or C1INIF<1>) will be set. This
bit can only be set by the module when a message is
received. The bit is cleared by the CPU when it has
completed processing the message in the buffer. If the
RXxIE bit (C1INTE<0> or C1INTE<1>) is set, an
interrupt will be generated when a message is
received.
RXF0 and RXF1 filters with the RXM0 mask are
associated with RXB0. The filters, RXF2, RXF3, RXF4
and RXF5, and the mask, RXM1, are associated with
RXB1.
19.4.2
The message acceptance filters and masks are used to
determine if a message in the message assembly
buffer should be loaded into either of the receive buff-
ers. Once a valid message has been received into the
Message Assembly Buffer (MAB), the identifier fields of
the message are compared to the filter values. If there
is a match, that message will be loaded into the
appropriate receive buffer.
The acceptance filter looks at incoming messages for
the RXIDE bit (CiRXnSID<0>) to determine how to
compare the identifiers. If the RXIDE bit is clear, the
message is a standard frame and only filters with the
EXIDE bit (C1RXFxSID<0>) clear are compared. If the
RXIDE bit is set, the message is an extended frame
and only filters with the EXIDE bit set are compared.
19.4.3
The mask bits essentially determine which bits to apply
the filter to. If any mask bit is set to a zero, then that bit
will automatically be accepted regardless of the filter
bit. There are 2 programmable acceptance filter masks
associated with the receive buffers, one for each buffer.
DS70135E-page 126
Message Reception
RECEIVE BUFFERS
MESSAGE ACCEPTANCE FILTERS
MESSAGE ACCEPTANCE FILTER
MASKS
19.4.4
An overrun condition occurs when the Message
Assembly Buffer (MAB) has assembled a valid
received message, the message is accepted through
the acceptance filters, and when the receive buffer
associated with the filter has not been designated as
clear of the previous message.
The overrun error flag, RXxOVR (C1INTF<15> or
C1INTF<14>) and the ERRIF bit (C1INTF<5>) will be
set and the message in the MAB will be discarded.
If the DBEN bit is clear, RXB1 and RXB0 operate inde-
pendently. When this is the case, a message intended
for RXB0 will not be diverted into RXB1 if RXB0
contains an unread message and the RX0OVR bit will
be set.
If the DBEN bit is set, the overrun for RXB0 is handled
differently. If a valid message is received for RXB0 and
RXFUL = 1, it indicates that RXB0 is full and
RXFUL = 0 indicates that RXB1 is empty, the message
for RXB0 will be loaded into RXB1. An overrun error will
not be generated for RXB0. If a valid message is
received for RXB0 and RXFUL = 1, and RXFUL = 1
indicates that both RXB0 and RXB1 are full, the
message will be lost and an overrun will be indicated
for RXB1.
19.4.5
The CAN module will detect the following receive
errors:
• Cyclic Redundancy Check (CRC) Error
• Bit Stuffing Error
• Invalid Message Receive Error
These receive errors do not generate an interrupt.
However, the receive error counter is incremented by
one in case one of these errors occur. The RXWAR bit
(C1INTF<9>) indicates that the receive error counter
has reached the CPU warning limit of 96 and an
interrupt is generated.
19.4.6
Receive interrupts can be divided into 3 major groups,
each including various conditions that generate
interrupts:
19.4.6.1
A message has been successfully received and loaded
into one of the receive buffers. This interrupt is acti-
vated immediately after receiving the End-of-Frame
(EOF) field. Reading the RXxIF flag will indicate which
receive buffer caused the interrupt.
19.4.6.2
The CAN module has woken up from Disable mode or
the device has woken up from Sleep mode.
RECEIVE OVERRUN
RECEIVE ERRORS
RECEIVE INTERRUPTS
Receive Interrupt
Wake-up Interrupt
© 2007 Microchip Technology Inc.

Related parts for DSPIC30F1010-30I/SO