ATmega8 Atmel Corporation, ATmega8 Datasheet - Page 67

no-image

ATmega8

Manufacturer Part Number
ATmega8
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega8

Flash (kbytes)
8 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
2
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
3
Input Capture Channels
1
Pwm Channels
3
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega8-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8-16AL
Manufacturer:
ALTERA
0
Part Number:
ATmega8-16AU
Manufacturer:
Atmel
Quantity:
20 000
Part Number:
ATmega8-16AU
Manufacturer:
ATMEL
Quantity:
5
Part Number:
ATmega8-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Company:
Part Number:
ATmega8-16AU
Quantity:
4
Part Number:
ATmega8-16AUR
Manufacturer:
AVX
Quantity:
4 000
Part Number:
ATmega8-16AUЈ¬ SL383
Manufacturer:
ATMEL
Quantity:
6 000
Part Number:
ATmega8-16PU
Manufacturer:
ATMEL
Quantity:
5 510
Part Number:
ATmega8515
Manufacturer:
AT
Quantity:
20 000
General Interrupt
Control Register –
GICR
General Interrupt Flag
Register – GIFR
2486Z–AVR–02/11
• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0
The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in
If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate
an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is
selected, the low level must be held until the completion of the currently executing instruction to
generate an interrupt.
Table 32. Interrupt 0 Sense Control
• Bit 7 – INT1: External Interrupt Request 1 Enable
When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU
general Control Register (MCUCR) define whether the external interrupt is activated on rising
and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an interrupt
request even if INT1 is configured as an output. The corresponding interrupt of External Interrupt
Request 1 is executed from the INT1 Interrupt Vector.
• Bit 6 – INT0: External Interrupt Request 0 Enable
When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU
general Control Register (MCUCR) define whether the external interrupt is activated on rising
and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt
request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt
Request 0 is executed from the INT0 Interrupt Vector.
• Bit 7 – INTF1: External Interrupt Flag 1
When an event on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-
bit in SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corresponding
Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag
can be cleared by writing a logical one to it. This flag is always cleared when INT1 is configured
as a level interrupt.
Bit
Read/Write
Initial Value
Bit
Read/Write
Initial Value
ISC01
0
0
1
1
ISC00
INTF1
0
1
0
1
INT1
R/W
R/W
7
0
7
0
Description
The low level of INT0 generates an interrupt request
Any logical change on INT0 generates an interrupt request
The falling edge of INT0 generates an interrupt request
The rising edge of INT0 generates an interrupt request
INTF0
INT0
R/W
R/W
Table
6
0
6
0
32. The value on the INT0 pin is sampled before detecting edges.
R
R
5
0
5
0
R
R
4
0
4
0
R
R
3
0
3
0
R
R
2
0
2
0
IVSEL
R/W
R
1
0
1
0
ATmega8(L)
IVCE
R/W
R
0
0
0
0
GICR
GIFR
67

Related parts for ATmega8