PIC18F86K90-I/PT Microchip Technology, PIC18F86K90-I/PT Datasheet - Page 90

no-image

PIC18F86K90-I/PT

Manufacturer Part Number
PIC18F86K90-I/PT
Description
64kB Flash, 4kB RAM, 1kB EE, 16MIPS, NanoWatt XLP, LCD, 5V 80 TQFP 12x12x1mm TRA
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F86K90-I/PT

Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
69
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F86K90-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F86K90-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
PIC18F86K90-I/PT
Quantity:
492
Part Number:
PIC18F86K90-I/PTRSL
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F87K90 FAMILY
6.3
The data memory in PIC18 devices is implemented as
static RAM. Each register in the data memory has a
12-bit address, allowing up to 4,096 bytes of data
memory. The memory space is divided into as many as
16 banks that contain 256 bytes each. PIC18FX6K90
and PIC18FX7K90 devices implement all 16 complete
banks, for a total of 4 Kbytes. PIC18FX5K90 devices
implement only the first eight complete banks, for a
total of 2 Kbytes.
Figure 6-6 and Figure 6-7 show the data memory
organization for the devices.
The data memory contains Special Function Registers
(SFRs) and General Purpose Registers (GPRs). The
SFRs are used for control and status of the controller
and peripheral functions, while GPRs are used for data
storage and scratchpad operations in the user’s
application. Any read of an unimplemented location will
read as ‘0’s.
The instruction set and architecture allow operations
across all banks. The entire data memory may be
accessed by Direct, Indirect or Indexed Addressing
modes. Addressing modes are discussed later in this
section.
To ensure that commonly used registers (select SFRs
and select GPRs) can be accessed in a single cycle,
PIC18 devices implement an Access Bank. This is a
256-byte memory space that provides fast access to
select SFRs and the lower portion of GPR Bank 0 with-
out using the Bank Select Register. For details on the
Access RAM, see Section 6.3.2 “Access Bank”.
DS39957B-page 90
Note:
Data Memory Organization
The operation of some aspects of data
memory are changed when the PIC18
extended instruction set is enabled. See
Section 6.6 “Data Memory and the
Extended Instruction Set” for more
information.
Preliminary
6.3.1
Large areas of data memory require an efficient
addressing scheme to make possible rapid access to
any address. Ideally, this means that an entire address
does not need to be provided for each read or write
operation. For PIC18 devices, this is accomplished with
a RAM banking scheme. This divides the memory
space into 16 contiguous banks of 256 bytes. Depend-
ing on the instruction, each location can be addressed
directly by its full 12-bit address, or an 8-bit, low-order
address and a four-bit Bank Pointer.
Most instructions in the PIC18 instruction set make use
of the Bank Pointer, known as the Bank Select Register
(BSR). This SFR holds the four Most Significant bits of
a location’s address. The instruction itself includes the
eight Least Significant bits. Only the four lower bits of
the BSR are implemented (BSR<3:0>). The upper four
bits are unused, always read as ‘0’ and cannot be
written to. The BSR can be loaded directly by using the
MOVLB instruction.
The value of the BSR indicates the bank in data
memory. The eight bits in the instruction show the loca-
tion in the bank and can be thought of as an offset from
the bank’s lower boundary. The relationship between
the BSR’s value and the bank division in data memory
is shown in Figure 6-7.
Since up to 16 registers may share the same low-order
address, the user must always be careful to ensure that
the proper bank is selected before performing a data
read or write. For example, writing what should be
program data to an 8-bit address of F9h while the BSR
is 0Fh, will end up resetting the program counter.
While any bank can be selected, only those banks that
are actually implemented can be read or written to.
Writes to unimplemented banks are ignored, while
reads from unimplemented banks will return ‘0’s. Even
so, the STATUS register will still be affected as if the
operation was successful. The data memory map in
Figure 6-6 indicates which banks are implemented.
In the core PIC18 instruction set, only the MOVFF
instruction fully specifies the 12-bit address of the
source and target registers. When this instruction
executes, it ignores the BSR completely. All other
instructions include only the low-order address as an
operand and must use either the BSR or the Access
Bank to locate their target registers.
BANK SELECT REGISTER
 2010 Microchip Technology Inc.

Related parts for PIC18F86K90-I/PT