HCNW4562 Avago Technologies US Inc., HCNW4562 Datasheet - Page 16

OPTOCPLR HI BAND 9MHZ 8DIP WIDE

HCNW4562

Manufacturer Part Number
HCNW4562
Description
OPTOCPLR HI BAND 9MHZ 8DIP WIDE
Manufacturer
Avago Technologies US Inc.
Datasheet

Specifications of HCNW4562

Input Type
DC
Package / Case
8-DIP (0.400", 10.16mm)
Number Of Channels
1
Voltage - Isolation
5000Vrms
Voltage - Output
20V
Current - Output / Channel
8mA
Current - Dc Forward (if)
25mA
Vce Saturation (max)
1.25V
Output Type
Transistor with Vcc
Mounting Type
Through Hole
Isolation Voltage
5000 Vrms
Minimum Forward Diode Voltage
1.2 V
Output Device
Phototransistor
Configuration
1 Channel
Current Transfer Ratio
52 %
Maximum Forward Diode Voltage
1.8 V
Maximum Reverse Diode Voltage
3 V
Maximum Input Diode Current
25 mA
Maximum Power Dissipation
100 mW
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Current Transfer Ratio (max)
-
Current Transfer Ratio (min)
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Contains lead / RoHS non-compliant
Other names
516-1050-5

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
HCNW4562
Manufacturer:
AVAGO
Quantity:
1 000
Part Number:
HCNW4562
Manufacturer:
TOSHIBA/东芝
Quantity:
20 000
Part Number:
HCNW4562#500
Manufacturer:
AVAGO
Quantity:
116
Conversion from HCPL-4562 to HCNW4562
In order to obtain similar circuit performance when
converting from the HCPL-4562 to the HCNW4562,
it is recommended to increase the Quiescent Input
Current, I
in Figure 4 is used, then potentiometer R4 should be
adjusted appropriately.
Design Considerations of the Application Circuit
The appÏication circuit in Figure 4 incorporates
several features that help maximize the bandwidth
performance of the HCPL-4562/HCNW4562. Most
important of these features is peaked response of the
detector circuit that helps extend the frequency range
over which the voltage gain is relatively constant. The
number of gain stages, the overall circuit topology, and
the choice of DC bias points are all consequences of
the desire to maximize bandwidth performance.
To use the circuit, first select R
LED quiescent current by:
For a constant value V
(adjusting the gain with R
keeping the modulation factor (MF) dependent only
on V
F actor ( MF ) :
V
Modulation
F actor ( MF ) :
F actor ( MF ) :
V
F actor ( MF ) :
For a given G
F actor ( MF ) :
only with h
F actor ( MF ) :
V
V
V
V
Where:
and,
16
where typically
I
i
I
I
i
I
I
i
I
i
i
O
i
I
O
O
I
I
O
O
O
I
I
I
I
I
I
I
I
I
i
i
i
i
i
i
F p-p
F p-p
F p-p
F p-p
F p-p
F p-p
I
R
I
I
R
G
I
I
I
R
G
R
R
F Q
F Q
F Q
F Q
F Q
F Q
PB Q
B XQ
PB Q
PB Q
B XQ
PB Q
PB Q
PB Q
B XQ
B XQ
B XQ
B XQ
I
I
I
I
I
I
F p-p
F p-p
F p-p
F p-p
F p-p
F p-p
R
R
R
R
R
R
CQ4
CQ4
CQ4
CQ4
CQ4
CQ4
p-p
p-p
p-p
p-p
p-p
p-p
F Q
F Q
= V
F Q
F Q
F Q
= V
F Q
= V
= V
= V
= V
10
10
10
10
V
V
p-p
p-p
p-p
p-p
p-p
p-p
Q4
Q4
Q4
Q4
Q4
Q4
9
9
9
9
9
9
E
=
=
=
=
=
=
.
*
*
*
*
*
CC
CC
CC
CC
CC
CC
V
R
V
R
V
R
V
V
R
V
R
R
V
V
1 + s R
1 + s R
1 + s R
1 + s R C
V
V
V
V
V
V
V
V
V
V
V
V
V
E
E
E
E
E
E
G
G
G
G
G
G
OUT
OUT
4
4
4
4
4
4
FQ
IN
IN
IN
IN
IN
IN
R
R
R
R
R
R
IN
CC
CC
CC
CC
CC
CC
– V
– V
– V
– V
– V
– V
V
V
V
V
V
V
i
i
i
i
i
i
V
V
R
V
V
R
V
V
R
R
R
R
I
I
I
I
I
I
, from 6 mA to 10 mA. If the application circuit
PB p-p
PB p-p
PB p-p
PB p-p
PB p-p
PB p-p
R
R
R
R
R
R
11
11
11
11
11
11
/R
/R
/R
/R
/R
/R
FEX
O
O
O
O
O
O
PB Q
PB Q
PB Q
PB Q
PB Q
PB Q
6
6
6
6
6
6
V
V
V
V
V
V
7
7
7
7
7
7
- 2 V
- 2 V
- 2 V
- 2 V
- 2 V
- 2 V
p-p
p-p
p-p
B E
p-p
p-p
p-p
B E
B E
B E
B E
B E
.
4
4
4
4
4
4
R
R
R
R
R
R
E
E
E
E
E
E
h
h
h
h
h
h
( I
( I
( I
( I
( I
( I
V
R
, V
R
R
R
R
R
i
2 I
i
2 I
i
2 I
i
i
i
2 I
2 I
2 I
9
F E X
9
9
F E X
9
9
9
F E X
F E X
F E X
F E X
4
4
4
4
4
4
F ( p-p)
F ( p-p)
F ( p-p)
F ( p-p)
F ( p-p)
F ( p-p)
9
9
9
10
10
10
10
10
10
=
=
=
=
=
=
G
G
G
G
G
G
4.25 V
4.25 V
4.25 V
I
4.25 V
4.25 V
4.25 V
I
PB
PB
PB
PB
PB
PB
470
470
470
470
470
470
( p-p)
( p-p)
( p-p)
( p-p)
( p-p)
E
( p-p)
I
PB
PB
F Q
F Q
F Q
, and V
F Q
F Q
F Q
F
B E
B E
B E
B E
B E
B E
V
V
V
V
V
V
C
C
C
R
R
R
R
R
R
/ I
/ I
/ I
/ I
/ I
/ I
V
V
V
V
V
V
I
R
R
R
R
R
R
I
CQ
CQ
CQ
PB
V
V
V
V
V
V
INp-p
INp-p
INp-p
INp-p
INp-p
INp-p
F
10
10
10
10
10
10
V
V
V
V
V
V
9
9
9
9
9
9
E
E
E
E
E
E
R
F
F
F
F
F
F
E
E
E
E
E
E
=
=
=
=
=
=
R
R
p-p
p-p
p-p
p-p
p-p
p-p
3
3
3
[ V
[ V
[ V
[ V
[ V
[ V
) R
) R
) R
) R
) R
) R
1
1
1
1
1
1
R
R
R
R
R
R
4
V
V
V
V
V
V
7
7
+
+
+
+
R
R
= 0.0032
R
10
10
10
10
10
2 V
10
2 V
2 V
2 V
2 V
2 V
B E X
B E X
CC
B E X
B E X
B E X
B E X
INp-p
INp-p
INp-p
INp-p
INp-p
INp-p
10
7
7
7
7
7
7
9
9
9.0 mA
9.0 mA
9.0 mA
9.0 mA
9.0 mA
9.0 mA
, DC output voltage will vary
2 R
2 R
2 R
R
R
R
R
R
R
INp-p
p-p
p-p
p-p
p-p
p-p
p-p
E
E
E
E
E
E
9
9
9
9
9
9
- ( I
- ( I
- ( I
- ( I
- ( I
- ( I
4
) preserves linearity by
1
, the circuit topology
1
1
1
1
1
11
11
11
to set V
PB Q
PB Q
PB Q
PB Q
PB Q
PB Q
f
f
f
T 4
T 4
T 4
4
4
4
- I
- I
- I
- I
- I
- I
B XQ
B XQ
B XQ
B XQ
B XQ
B XQ
E
for the desired
) R
) R
) R
) R
) R
) R
7
7
7
7
7
7
]
]
]
]
]
]
( 10)
( 10)
( 5)
( 5)
( 5)
( 5)
( 5)
( 5)
( 8)
( 9)
( 8)
( 8)
( 9)
( 8)
( 8)
( 8)
( 9)
( 9)
( 9)
( 1)
( 1)
( 3)
( 1)
( 4)
( 1)
( 1)
( 3)
( 1)
( 3)
( 4)
( 3)
( 3)
( 4)
( 3)
( 6)
( 4)
( 4)
( 4)
( 7)
( 6)
( 6)
( 7)
( 6)
( 6)
( 6)
( 7)
( 7)
( 7)
( 7)
( 2)
( 2)
( 2)
( 2)
( 2)
( 2)
Figure 15 shows the dependency of the DC output
voltage on h
F actor ( MF ) :
For 9 V < V
V
The voltage gain of the second stage (Q
approximately equal to:
Increasing R′
R
R
If it is necessary to drive a low impedance load,
bandwidth may also be preserved by adding an
additional emitter following the buffer stage (Q
Figure 16), in which case R
set I
Finally, adjust R
Definition:
where typically
where typically
where typically
I
I
I
I
O
I
I
11
9
V
C
i
I
I
R
R
G
G
I
R
G
F p-p
PB Q
PB Q
B XQ
B XQ
PB Q
B XQ
/R
i
I
R
R
R
V
F p-p
h
CQ4
CQ4
CQ4
PB
i
IN
I
I
CQ
p-p
F Q
= V
f
10
10
10
F
PBQ
BXQ
p-p
V
V
V
G
Q4
Q4
and the load impedance) or reducing R
Q4
I
BEX
FEX
9
9
9
CQ4
V
T
10
p-p
p-p
p-p
FQ
4
3
V
E
*
*
ratio constant) will improve the bandwidth.
*
= Voltage Gain
= Quiescent LED forward current
= Peak-to-peak small signal LED forward
= Peak-to-peak small signal input voltage
= Peak-to-peak small signal
= Quiescent base photo current
= Base-Emitter voltage of HCPL-4562/
= Quiescent base current of HCPL-4562/
= Current Gain (I
= Voltage across emitter degeneration
= Unity gain frequency of Q
= Effective capacitance from collector of Q
CC
≅ 2 mA.
V
V
V
1 + s R
1 + s R
1 + s R
V
V
V
V
V
V
OUT
OUT
OUT
G
G
G
current
base photo current
HCNW4562 transistor
HCNW4562 transistor
HCNW4562 transistor
resistor R
to ground
IN
R
R
R
IN
IN
IN
CC
CC
CC
V
– V
V
V
i
V
V
R
R
V
R
I
CC
PB p-p
R
R
11
11
R
11
O
O
O
PB Q
6
6
6
V
V
V
7
7
FEX
7
- 2 V
< 12 V, select the value of R
- 2 V
- 2 V
11
B E
p-p
4
R
R
R
E
E
E
h
h
h
R
R
.
R
(R′
9
9
i
2 I
F E X
F E X
9
F E X
4
4
F ( p-p)
9
9
9
10
10
10
=
4.25 V
4.25 V
I
I
4.25 V
I
470
470
470
to achieve the desired voltage gain.
I
I
I
( p-p)
PB
PB
PB
11
F Q
F
F
F
B E
B E
B E
C
C
C
4
R
V
I
I
I
R
includes the parallel combination of
I
I
I
CQ
CQ
CQ
PB
PB
PB
10
INp-p
10
F
F
F
V
9
R
R
R
E
=
R
R
R
p-p
3
3
3
[ V
1
1
1
4
4
4
V
7
7
7
C
+
+
+
R
R
R
/I
2 V
R
R
= 0.0032
= 0.0032
R
= 0.0032
INp-p
B E X
10
10
10
B
9
9
9
9.0 mA
9.0 mA
9.0 mA
) of HCPL-4562/
2 R
2 R
2 R
p-p
E
- ( I
11
1
1
1
11
11
11
PB Q
can be increased to
f
f
f
5
T 4
T 4
T 4
4
4
4
- I
B XQ
11
such that
) R
9
7
]
(keeping
3
( 10)
( 10)
( 10)
3
( 5)
) is
5
( 8)
( 8)
( 9)
( 9)
( 8)
( 9)
( 6)
( 3)
( 6)
( 7)
( 4)
( 7)
( 6)
( 7)
in

Related parts for HCNW4562