lm12l458civf National Semiconductor Corporation, lm12l458civf Datasheet - Page 19

no-image

lm12l458civf

Manufacturer Part Number
lm12l458civf
Description
12-bit Sign Data Acquisition System With Self-calibration
Manufacturer
National Semiconductor Corporation
Datasheet
2.0 Internal User-Programmable
Registers
limit #2, its sign, and an indicator that shows that an interrupt
can be generated if the input signal is greater or less than the
programmed limit.
Instruction RAM “00”
Bit 0 is the LOOP bit. It indicates the last instruction to be
executed in any instruction sequence when it is set to a “1”.
The next instruction to be executed will be instruction 0.
Bit 1 is the PAUSE bit. This controls the Sequencer’s opera-
tion. When the PAUSE bit is set (“1”), the Sequencer will stop
after reading the current instruction, but before executing it
and the start bit, in the Configuration register, is automati-
cally reset to a “0”. Setting the PAUSE also causes an
interrupt to be issued. The Sequencer is restarted by placing
a “1” in the Configuration register’s Bit 0 (Start bit).
After the Instruction RAM has been programmed and the
RESET bit is set to “1”, the Sequencer retrieves Instruction
000, decodes it, and waits for a “1” to be placed in the
Configuration’s START bit. The START bit value of “0” “over-
rides” the action of Instruction 000’s PAUSE bit when the
Sequencer is started. Once started, the Sequencer executes
Instruction 000 and retrieves, decodes, and executes each
of the remaining instructions. No PAUSE Interrupt (INT 5) is
generated the first time the Sequencer executes Instruction
000 having a PAUSE bit set to “1”. When the Sequencer
encounters a LOOP bit or completes all eight instructions,
Instruction 000 is retrieved and decoded. A set PAUSE bit in
Instruction 000 now halts the Sequencer before the instruc-
tion is executed.
Bits 2–4 select which of the eight input channels (“000” to
“111” for IN0–IN7) will be configured as non-inverting inputs
to the LM12L458’s ADC. (See Table 1.)
Bits 5–7 select which of the seven input channels (“001” to
“111” for IN1 to IN7) will be configured as inverting inputs to
the LM12L458’s ADC. (See Table 1.) Fully differential opera-
tion is created by selecting two multiplexer channels, one
operating in the non-inverting mode and the other operating
(Continued)
19
in the inverting mode. A code of “000” selects ground as the
inverting input for single ended operation.
Bit 8 is the SYNC bit. Setting Bit 8 to “1” causes the Se-
quencer to suspend operation at the end of the internal S/H’s
acquisition cycle and to wait until a rising edge appears at
the SYNC pin. When a rising edge appears, the S/H ac-
quires the input signal magnitude and the ADC performs a
conversion on the clock’s next rising edge. When the SYNC
pin is used as an input, the Configuration register’s “I/O
Select” bit (Bit 7) must be set to a “0”. With SYNC configured
as an input, it is possible to synchronize the start of a
conversion to an external event. This is useful in applications
such as digital signal processing (DSP) where the exact
timing of conversions is important.
When the LM12L458 is used in the “watchdog” mode with
external synchronization, two rising edges on the SYNC
input are required to initiate two comparisons. The first rising
edge initiates the comparison of the selected analog input
signal with Limit #1 (found in Instruction RAM “01”) and the
second rising edge initiates the comparison of the same
analog input signal with Limit #2 (found in Instruction RAM
“10”).
Bit 9 is the TIMER bit. When Bit 9 is set to “1”, the Se-
quencer will halt until the internal 16-bit Timer counts down
to zero. During this time interval, no “watchdog” comparisons
or analog-to-digital conversions will be performed.
Bit 10 selects the ADC conversion resolution. Setting Bit 10
to “1” selects 8-bit + sign and when reset to “0” selects 12-bit
+ sign.
Bit 11 is the “watchdog” comparison mode enable bit. When
operating in the “watchdog” comparison mode, the selected
analog input signal is compared with the programmable
values stored in Limit #1 and Limit #2 (see Instruction RAM
“01” and Instruction RAM “10”). Setting Bit 11 to “1” causes
two comparisons of the selected analog input signal with the
two stored limits. When Bit 11 is reset to “0”, an 8-bit + sign
or 12-bit + sign (depending on the state of Bit 10 of Instruc-
tion RAM “00”) conversion of the input signal can take place.
www.national.com

Related parts for lm12l458civf