ad7886kp Analog Devices, Inc., ad7886kp Datasheet - Page 8

no-image

ad7886kp

Manufacturer Part Number
ad7886kp
Description
Lc2mos 12-bit, 750 Khz/1 Mhz, Sampling Adc
Manufacturer
Analog Devices, Inc.
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD7886KP
Manufacturer:
ADI
Quantity:
103
Part Number:
ad7886kpZ
Manufacturer:
ADI
Quantity:
103
AD7886
BIPOLAR OFFSET AND GAIN ADJUSTMENT
In applications where absolute accuracy is important, offset and
gain error can be adjusted to zero. Offset is adjusted by trim-
ming the voltage at the VIN1 or VIN2 input when the analog in-
put is at zero volts. This can be achieved by adjusting the offset
of an external amplifier used to drive either of these inputs (see
A1 in Figure 9). The trim procedure is as follows:
Gain error can be adjusted at either the first code transition
(ADC negative full scale) or the last code transition (ADC posi-
tive full scale). Adjusting the reference, as in Figure 9, will trim
the positive gain error only. The trim procedure is as follows:
If the first code transition needs adjusting, a gain trim must be
included in the analog signal path. The trim procedure will then
consist of applying an analog signal of –4.99756 V (–FS/2+1 LSB)
and adjusting the trim until the output code flickers between
0000 0000 0000 and 0000 0000 0001.
TIMING AND CONTROL
Conversion start is controlled by the CONVST input (see Fig-
ures 10 and 11). A high to low going edge on the CONVST in-
put puts the track/hold amplifier into the hold mode. The ADC
conversion procedure does not begin until a rising CONVST
pulse edge occurs. The width of the CONVST pulse low time
determines the track-to-hold settling time. The BUSY output,
which indicates the status of the ADC, goes low while conver-
sion is in progress. At the end of conversion BUSY returns high,
indicating that new data is available on the AD7886’s output
latches. The track/hold amplifier returns to the track mode at
the end of conversion and remains there until the next
CONVST pulse. Conversion starts must not be attempted while
conversion is in progress as this will cause erroneous results.
Apply zero volts at AIN and adjust the offset of A1 until the
ADC output code flickers between 0111 1111 1111 and 1000
Apply a voltage of 4.99756 V, (FS/2–1 LSB) at AIN and
adjust R3 until the output code flickers between 1111 1111
1110 and 1111 11111111.
0000 0000.
Figure 9. Bipolar Operation with Gain Error Adjust
AD586
+V
GND
+V
V
AIN
IN
OUT
*ADDITIONAL PINS OMITTED FOR CLARITY
5V
56k
R3
R2
5k
+
5V
R1
82k
10 F
+
AD845
A1
C1
AD707
+
0.1 F
C2
3.5V
VIN1
VIN2
AGND
V
+
SUM
AD7886*
REF
5REF
V
5V
SS
+
V
5V
DD
–8–
Data read operations are controlled by the CS and RD inputs.
These digital inputs, when low, enable the AD7886’s three-
state output latches. Note, these latches cannot be enabled dur-
ing conversion. In applications where CS and RD are tied per-
manently low, as in Figure 11, the data bus will go into the
three-state condition at the start of conversion and return to its
active state when conversion is complete. Tying CS and RD
permanently low is useful when external latches are used to
store the conversion results. The data bus becomes active before
BUSY returns high at the end of conversion, so that BUSY can
be used as a clocking signal for the external latches.
A typical DSP application would have a timer connected to the
CONVST input for precise sampling intervals. BUSY would be
connected to the interrupt of a microprocessor that would be
asserted at the end of every conversion. The microprocessor
would then assert the CS and RD inputs and read the data from
the ADC. For applications where both data reading and conver-
sion control need to be managed by a microprocessor, a CONVST
pulse can be decoded from the address bus. One decoding pos-
sibility is that a write instruction to the ADC address starts a
conversion, and a read instruction reads the conversion result.
Figure 10. Conversion Start and Data Read Timing
CONVST
CONVST
Diagram
DATA
BUSY
DATA
BUSY
Figure 11. Conversion Start and Data Read
Timing Diagram, ( CS = RD = 0 V)
CS
RD
t
5
t
1
TRACK-TO-HOLD
TRANSITION
TRACK-TO-HOLD
TRANSITION
HIGH IMPEDANCE
t
t
1
t
5
9
HIGH IMPEDANCE
CONVERSION
START
TRANSITION
HOLD TO
TRACK
t
CONVERSION
START
CONV
t
CONV
t
13
t
13
t
11
t
8
t
6
t
VALID
VALID
t
DATA
DATA
4
t
t
2
t
12
HOLD TO TRACK
TRANSITION
10
12
t
t
7
3
REV. B

Related parts for ad7886kp