TSM1051 STMicroelectronics, TSM1051 Datasheet - Page 6

no-image

TSM1051

Manufacturer Part Number
TSM1051
Description
CONSTANT VOLTAGE AND CONSTANT CURRENT CONTROLLER FOR BATTERY CHARGERS AND ADAPTORS
Manufacturer
STMicroelectronics
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
TSM1051CLT
Manufacturer:
ST
0
Part Number:
TSM1051CLT
Manufacturer:
ST
Quantity:
20 000
Part Number:
TSM1051CLT/M801
Manufacturer:
MAXIM
Quantity:
10 819
1. Voltage and Current Control
1.1. Voltage Control
The voltage loop is controlled via a first transcon-
ductance operational amplifier, the resistor bridge
R1, R2, and the optocoupler which is directly con-
nected to the output.
The relation between the values of R1 and R2
should be chosen as written in Equation 1.
R1 = R2 x Vref / (Vout - Vref)
Where Vout is the desired output voltage.
To avoid the discharge of the load, the resistor
bridge R1, R2 should be highly resistive. For this
type of application, a total value of 100K
more) would be appropriate for the resistors R1
and R2.
As an example, with R2 = 100K , Vout = 4.10V,
Vref = 1.210V, then R1 = 41.9K .
Note that if the low drop diode should be inserted
between the load and the voltage regulation resis-
tor bridge to avoid current flowing from the load
through the resistor bridge, this drop should be
taken into account in the above calculations by re-
placing Vout by (Vout + Vdrop).
1.2. Current Control
The current loop is controlled via the second
trans-conductance
sense resistor Rsense, and the optocoupler.
The control equation verifies:
Rsense x Ilim = Vsense
Rsense = Vsense / Ilim
where Ilim is the desired limited current, and
Vsense is the threshold voltage for the current
control loop.
As an example, with Ilim = 1A, Vsense = -200mV,
then Rsense = 200m .
Note that the Rsense resistor should be chosen
taking into account the maximum dissipation
(Plim) through it during full load operation.
Plim = Vsense x Ilim.
As an example, with Ilim = 1A, and Vsense =
200mV, Plim = 200mW.
Therefore, for most adapter and battery charger
applications, a quarter-watt, or half-watt resistor to
make the current sensing function is sufficient.
PRINCIPLE OF OPERATION AND APPLICATION HINTS
operational
amplifier,
eq2’
eq3
eq2
Eq1
the
(or
Vsense threshold is achieved internally by a re-
sistor bridge tied to the Vref voltage reference. Its
middle point is tied to the positive input of the cur-
rent control operational amplifier, and its foot is to
be connected to lower potential point of the sense
resistor as shown on the following figure. The re-
sistors of this bridge are matched to provide the
best precision possible.
The current sinking outputs of the two trans-con-
ductance operational amplifiers are common (to
the output of the IC). This makes an ORing func-
tion which ensures that whenever the current or
the voltage reaches too high values, the optocou-
pler is activated.
The relation between the controlled current and
the controlled output voltage can be described
with a square characteristic as shown in the fol-
lowing V/I output-power graph.
Figure 9 : Output voltage versus output current
2. Compensation
The voltage-control trans-conductance operation-
al amplifier can be fully compensated. Both of its
output and negative input are directly accessible
for external compensation components.
An example of a suitable compensation network is
shown in Fig.2. It consists of a capacitor
Cvc1=2.2nF and a resistor Rcv1=470K in series,
0
TSM1051 Vcc : independent power supply
Vout
Secondary current regulation
Voltage regulation
TSM1051 Vcc : On power output
Primary current regulation
TSM1051
Iout
6/9

Related parts for TSM1051