PM6686 STMicroelectronics, PM6686 Datasheet

no-image

PM6686

Manufacturer Part Number
PM6686
Description
Dual Step-down Controller With Adjustable Voltages, Adjustable Ldo And Auxiliary Charge Pump Controller For Notebook
Manufacturer
STMicroelectronics
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PM6686
Manufacturer:
TI
Quantity:
18
Part Number:
PM6686
Manufacturer:
ST
0
Part Number:
PM6686
Manufacturer:
ST
Quantity:
20 000
Part Number:
PM6686ES
Manufacturer:
ST
0
Part Number:
PM6686TR
Manufacturer:
st
Quantity:
2 069
Part Number:
PM6686TR
Manufacturer:
ST
Quantity:
20 000
Part Number:
PM6686TR
Manufacturer:
ST
Quantity:
16 093
Company:
Part Number:
PM6686TR
Quantity:
2 720
Company:
Part Number:
PM6686TR
Quantity:
547
Features
Applications
Table 1.
July 2009
Dual step-down controller with adjustable voltages, adjustable LDO
5.5 V to 28 V input voltage range
Dual fixed OUT1 = 1.5 V/5 V and OUT2 =
1.05 V / 3.3 V outputs or adjustable OUT1 = 0.7
V to 5.5 V and OUT2 = 0.7 V to 2.5 V outputs,
± 1.5% accuracy over valley regulation
Low-side MOSFETs' R
and programmable current limit
Constant ON-time control
Frequency selectable
Soft-start internally fixed at 2 ms and soft-stop
Selectable pulse skipping at light loads
Selectable minimum frequency (33 kHz) in
pulse skip mode
Independent Power Good and EN signals
Latched OVP and UVP
Charge pump feedback
Fixed 3.3 V/5.0 V, or adjustable output 0.7 V to
4.5 V, ± 1.5% (LDO): 200 mA
3.3 V reference voltage ± 2.0%: 5 mA
2.0 V reference voltage ± 1.0%: 50 µA
Notebook computers
Main (3.3 V/5 V), chipset (1.5 V/1.05 V),
DDR1/2/3, graphic cards power supply
PDAs, mobile devices, tablet PC or slates
3-4 cells Li+ battery powered devices
Order codes
PM6686TR
Device summary
PM6686
DS(on)
and auxiliary charge pump controller for notebook
current sensing
VFQFPN-32L 5 x 5 mm
Doc ID 15281 Rev 4
Package
Description
PM6686 is a dual step-down controller specifically
designed to provide extremely high efficiency
conversion, with lossless current sensing
technique. The constant on-time architecture
assures fast load transient response and the
embedded voltage feed-forward provides nearly
constant switching frequency operation. Pulse
skipping technique increases efficiency at very
light load. Moreover a minimum switching
frequency of 33 kHz is selectable to avoid audio
noise issues. The PM6686 provides a selectable
switching frequency, allowing three different
values of switching frequencies for the two
switching sections. The output voltages OUT1
and OUT2 can be programmed to regulate
1.5 V/5 V and 1.05 V/3.3 V outputs respectively or
can deliver two adjustable output voltages. An
optional external charge pump can be monitored.
This device embeds a linear regulator that can
provide 3.3 V/5 V or an adjustable voltage from
0.7 V to 4.5 V output. The linear regulator
provides up to 100 mA output current. LDO can
be bypassed with the switching regulator outputs
or with an external power supply (switchover
function).
When in switchover, the LDO output can source
up to 200 mA.
VFQFPN-32 5 x 5 mm
Tape and reel
Packaging
Tray
PM6686
www.st.com
1/50
50

Related parts for PM6686

PM6686 Summary of contents

Page 1

... Pulse skipping technique increases efficiency at very light load. Moreover a minimum switching frequency of 33 kHz is selectable to avoid audio noise issues. The PM6686 provides a selectable switching frequency, allowing three different values of switching frequencies for the two switching sections. The output voltages OUT1 and OUT2 can be programmed to regulate 1 ...

Page 2

... Switching sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 9 Monitoring and protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.1 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.2 Undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.3 PVCC monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2/50 Output voltage set Constant on time control (COT PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Non audible SKIP (NA SKIP Gate drivers and logic supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Current sensing and current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Soft-start and soft-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Doc ID 15281 Rev 4 PM6686 ...

Page 3

... PM6686 9.4 Linear regulator section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9.5 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.6 Voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.7 General device fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.7.1 10 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.1 External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.1.1 10.1.2 10.1.3 10.1.4 11 Diode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 11.1 Freewheeling diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 11.2 Charge pump diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 11.3 Other important components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 12 PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 13 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Inductor ...

Page 4

... Load transient 0 µs OUT2 = 1,05 V SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 44. Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 45. Resistor divider to configure the output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 46. Constant on time block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 47. Inductor current and output voltage in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 48. Inductor current and output voltage in SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4/50 Doc ID 15281 Rev 4 PM6686 ...

Page 5

... PM6686 Figure 49. Inductor current and output voltage in NA SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 50. Internal supply diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 51. Current waveforms in current limit conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 52. Current limit circuit block diagram Figure 53. VOUT2 behavior if EN2 is connected to VREF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 54. Charge pump application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 55. VIN pin filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 56 ...

Page 6

... Simplified application schematic 1 Simplified application schematic Figure 1. Simplified application schematic 6/50 Doc ID 15281 Rev 4 PM6686 ...

Page 7

... PM6686 2 Pin settings 2.1 Connections Figure 2. Pin connection (through top view) 2.2 Pin descriptions Table 2. Pin descriptions N° Pin 1 VREF2 2 TON 3 VCC 4 EN_LDO 5 VREF3 6 VIN Internal 2 V high accuracy voltage reference. It can deliver 50 μA. Loading VREF2 can affect FB and output accuracy. Bypass to GND with a 100 nF capacitor ...

Page 8

... Bootstrap capacitor connection for the switching section 1. It supplies the high-side gate driver. Low-side gate driver output for the section low-side gate drivers supply voltage input. Bypass to PGND with a 1 μF capacitor. Doc ID 15281 Rev 4 Function th of the GND-PHASE1 drop PM6686 ...

Page 9

... PM6686 Table 2. Pin descriptions (continued) N° Pin 20 CP_FB 21 GND 22 PGND 23 LGATE2 24 BOOT2 25 PHASE2 26 HGATE2 27 EN2 28 PG2 29 SKIP 30 OUT2 31 ILIM2 32 REFIN2 The CP_FB is used to monitor the optional external 14 V charge pump. Connect a resistive voltage-divider from 14 V charge pump output to GND. If CP_FB drops below the threshold voltage, the device performs a no audible skip cycle ...

Page 10

... Symbol R thJA STG T A 10/50 Parameter = 25 °C A Parameter Thermal resistance junction to ambient Junction operating temperature range Storage temperature range Operating ambient temperature range Doc ID 15281 Rev 4 PM6686 Value Unit - -0.3 to BOOTx +0.3 V -0.3 to PVCC +0 -0.3 to VCC+0 ...

Page 11

... PM6686 4 Recommended operating conditions Table 5. Recommended operating conditions Symbol VIN VCC REFIN2 OUT1 ILIM LDOREFIN LDO DC output current (switchover function enabled) LDO DC output current (switchover function disabled) Recommended operating conditions Parameter Input voltage range, LDO = regulation VCC operative voltage range REFIN2 voltage range with OUT2 in adjustable mode, VIN = 5 ...

Page 12

... Adjustable, VILIM = 2 V, GND-PHASE SKIP = GND, VREF2, or OPEN, GND- PHASE TON = GND or VREF2 OUT1 = 5.125 V TON = VCC OUT2 = 3.368 V TON = GND TON = VCC or VREF2 SKIP = VREF2(or OPEN) Doc ID 15281 Rev 4 PM6686 Min Typ Max Unit 3.25 3.330 3.397 V 1.038 1.05 1.062 V 1.482 1.500 1.518 V 4 ...

Page 13

... PM6686 Table 6. Electrical characteristics (continued) Symbol Parameter Linear regulator and reference LDO LDO output voltage LDO accuracy in adjustable mode LDO short circuit current (linear regulator enabled) LDO_SW LDO_SW switch on threshold LDO_SW LDO_SW hysteresis LDO_SW switch resistance VREF3 output voltage VREF3 VREF3 current limit ...

Page 14

... PVCC = -BOOT, Idiode = 10 mA BOOT PHASE = 28 V, PVCC = 5 V HGATEx high state (pull-up) Isource = 100 mA HGATEx low state (pull-down) Isink = 100 mA LGATEx high state (pull-up) Isource = 100 mA LGATEx low state (pull-down) Isink = 100 mA Doc ID 15281 Rev 4 PM6686 Min Typ Max Unit 0.528 V 4 ...

Page 15

... VCC (200 / 300 kHz), SKIP = GND (skip mode), LDOREFIN = SGND (LDO = 5 V), ON LDO_SW = OUT1, PVCC connected to LDO, V load unless specified). Measures performed on the demonstration kit (PM6686_SYSTEM and PM6686_CHIPSET) Efficiency traces: Green: VIN = 7 V, red: VIN = 12 V, blue: VIN = 19 V. Figure 3. Efficiency vs load OUT1 = Figure 5 ...

Page 16

... Load regulation OUT1 = Figure 9. Load regulation OUT1 = 1 Figure 11. Switching frequency vs load OUT1 = 16/50 Figure 8. = VCC ON Figure 10. Load regulation = VCC ON Figure 12. Switching frequency vs load = VCC ON Doc ID 15281 Rev 4 PM6686 Load regulation OUT2 = 3 VCC ON OUT2 = 1. VCC ON OUT2 = 3 VCC ON ...

Page 17

... PM6686 Figure 13. Section 1 line regulation OUT1 = Figure 15. Section 1 line regulation OUT1 = 1 Figure 17. Stand-by mode input battery current vs input voltage Typical operating characteristics Figure 14. Section 2 line regulation = VCC ON Figure 16. Section 2 line regulation = VCC ON Figure 18. Shut-down mode input Doc ID 15281 Rev 4 OUT2 = 3 ...

Page 18

... Typical operating characteristics Figure 19. PWM no load input currents vs input voltage Figure 21. NA SKIP no load input currents vs input voltage Figure 23. VREF2 load regulation 18/50 Figure 20. SKIP no load input currents vs input voltage Figure 22. VREF3 load regulation Figure 24. LDO = 3.3 V load regulation Doc ID 15281 Rev 4 PM6686 ...

Page 19

... PM6686 Figure 25. LDO = 5 V load regulation 6.1 Screen shots Typical operating characteristic (T FB1 = GND (OUT1 = 5 V), REFIN2 = VCC (OUT2 = 3.3 V), LDOREFIN = SGND (LDO = 5 V), CP_FB = floating, LDO_SW = OUT1, PVCC connected to LDO, VIN = 12 V, EN1-EN2-EN_LDO are high, no load unless specified) Figure 26. OUT1 soft-start no load ...

Page 20

... Typical operating characteristics Figure 28. OUT1 soft-start 8 A constant current load Figure 30. OUT1 soft-end, no load Figure 32. OUT1 soft-start, EN2 = VREF2 no loads applied 20/50 Figure 29. OUT2 soft-start loaded 8 A constant current load Figure 31. OUT2 soft-end, no load Figure 33. OUT2 soft-start, EN1=VREF2 no loads applied Doc ID 15281 Rev 4 PM6686 ...

Page 21

... PM6686 Figure 34. Soft-end, EN2 = VREF2 no loads applied Figure 36. Load transient 0 A/µs OUT1 = 5 V PWM mode Figure 38. Load transient 0 µs OUT1 = 1.5 V PWM mode Typical operating characteristics Figure 35. Soft-end, EN1=VREF2 no loads applied Figure 37. Load transient 0 A/µs OUT1 = 5 V SKIP mode Figure 39. Load transient 0 µ ...

Page 22

... Typical operating characteristics Figure 40. Load transient 0 A/µs OUT2 = 3.3 V PWM mode Figure 42. Load transient 0 µs OUT2 = 1.05 V PWM mode 22/50 Figure 41. Load transient 0 A/µs OUT2 = 3.3 V SKIP mode Figure 43. Load transient 0 µs OUT2 = 1.05 V SKIP mode Doc ID 15281 Rev 4 PM6686 ...

Page 23

... PM6686 7 Block diagram Figure 44. Functional block diagram UVLO LDOREFIN LDO LDO_SW CP_FB BOOT1 HGATE1 PHASE1 OUT1 PVCC LGATE1 FB1 PG1 EN1 EN2 EN_LDO VIN VREF3 + VREF3 - ADJ. LINEAR REGULATOR LDO EN INT SWITCHOVER + THRESHOLD - PVCC LEVEL SHIFTER SMPS1 CONTROLLER STARTUP CONTROLLER LDO EN INT ...

Page 24

... Output voltage set up The switching sections can be configured in several ways. OUT1 output voltage is configured with FB1 pin. If FB1 pin is tied to GND the PM6686 regulates 5 V while if FB1 is connected to VCC the controller set OUT1 at 1.5 V. Using an external resistor divider the output can be adjusted following this equation: ...

Page 25

... PM6686 Figure 45. Resistor divider to configure the output voltage   Where R1, R2 are the resistors of the FB1 pin divider, as shown in Figure 2. OUT2 output voltage is programmed with REFIN2 pin. Fixed output voltage is selected connecting REFIN2 to VREF3 (OUT2 = 1. VCC (OUT2 = 3.3 V). When the REFIN2 voltage is between 0.7 V and 2.5 V, OUT2 output voltage tracks REFIN2 voltage ...

Page 26

... Device description 8.1.2 Constant on time control (COT) PM6686 implements a pseudo-fixed frequency algorithm using the COT architecture. The two sections are completely independent with separated switching controllers (SMPS). The COT architecture bases its algorithm on the output ripple derived across the output capacitor's ESR. The controller has an internal on time (T ...

Page 27

... An adaptive anti-cross conduction algorithm avoids current paths between V during switching transition. The PM6686 has three different operation modes selectable with SKIP pin: forced PWM (PWM), pulse SKIP (SKIP) and non audible pulse SKIP (NA SKIP). The following paragraphs explain in details the different features of these operation modes. ...

Page 28

... PWM operation mode has a quasi-constant switching frequency, avoiding any audible noise issue and the continuous current mode assures better load transitions despite of a lower efficiency at light loads. Figure 47. Inductor current and output voltage in PWM mode Inductor current Output voltage Vreg 28/50 starts. ON Ton Toff Doc ID 15281 Rev 4 PM6686 , the high-side MOSFET ON t ...

Page 29

... To avoid audio noise the NA SKIP operation mode can be selected, connecting SKIP pin to VREF2 or leaving it floating. In this condition if a new cycle doesn't start within 30 μ s typ. from the previous one the PM6686 turns on the low-side MOSFET to discharge the output capacitor. The inductor current goes negative until the output reaches the voltage regulation voltage allowing a new cycle to begin ...

Page 30

... The PVCC pin is the input for the supply of the low-side driver and PGND is the pin used as return rail. The PM6686 implements an anti-cross conduction protection which prevents high-side and low-side MOSFET from being on at the same time. The power dissipation of each driver can be calculated as: ...

Page 31

... Current sensing and current limit The PM6686 implements a positive valley current limit to protect the application from an overcurrent fault. Each section has an independent current limit setting. A new switching cycle can't start until the inductor current is under the positive current limit threshold. Note that the peak current flowing in the inductor can reach a value greater than the current limit threshold by an amount equal to the inductor ripple current ...

Page 32

... A power up sequence for the switching sections can be selected connecting one EN pin to VREF2. 32/50 5uA + - Ton Generator Control pin voltage V = VCC-1 V ILIM 0 ILIM V = 5µ ILIM ILIM Doc ID 15281 Rev 4 PM6686 HGATE PHASE LGAT E Threshold SET 100 mV V /10 ILIM of DS(on) ...

Page 33

... Figure 53. VOUT2 behavior if EN2 is connected to VREF2   To protect the EN1, EN2, EN_LDO and SKIP pin of the PM6686 an external divider or a series resistor is required, in order to prevent a large inrush current flowing into the device in case the voltage spike is exceeding the recommended operating conditions. ...

Page 34

... Monitoring and protections 9 Monitoring and protections The PM6686 controls its switching output to prevent any damage or uncontrolled working condition. The device offers also PGOOD signals to monitor the state of each switching output voltage. PGOOD is an open drain output pulled low if the output voltage is below the 90% or above the OVP threshold ...

Page 35

... PM6686 9.4 Linear regulator section The PM6686 has an integrated linear regulator (LDO) that can provide an average of 100 mA typ. with a peak current of 270 mA typ. The LDO can be enabled using EN_LDO pin. If VIN is applied the linear regulator is active even if PVCC is low. The output voltage can be programmed by LDOREFIN pin. If LDOREFIN pin is tied to ground (GND) the LDO provides output voltage ...

Page 36

... Monitoring and protections 9.5 Charge pump The PM6686 can drive an external charge pump circuit whose typical application schematic is shown in the next figure. Figure 54. Charge pump application circuit   COU T The charge pump works in 4 phases: 1. LGATE is low charged through the D1a diode at OUT1 voltage minus the diode drop ...

Page 37

... VCC. 9.6 Voltage references The PM6686 provides two voltage references. The device regulates a 3,3 V voltage reference (VREF3) with ±2% accuracy over temperature. VREF3 can source mA. VREF3 voltage is always available if V applied. The device allows the enabling of the outputs if VREF3 is above 2,8V typ. and turns off when VREF3 falls under 2,7 V typ. VREF2 reference with an accuracy of ± ...

Page 38

... the input voltage Δ (max (max)) LRMS LOAD 12 − Δ = × IN max OUT I (max) L × Δ I (max Ipeak I (max) LOAD 2 Doc ID 15281 Rev 4 PM6686 the output voltage OUT : LRMS 2 V OUT IN max ...

Page 39

... PM6686 Table 14. Inductor manufacturer Manufacturer COILCRAFT COILCRAFT COILCRAFT 10.1.2 Input capacitor In a buck topology converter the current that flows into the input capacitor is a pulsed current with zero average value. The input RMS current of the two switching sections can be roughly estimated as follows: ...

Page 40

... Doc ID 15281 Rev 4 ESR max (mΩ) Rated voltage (V) 2.5 to 6.3 2 switching × 2 OUT I (max) LOAD IN min Δ I × + × (max LOAD PM6686 × off sw ...

Page 41

... PM6686 Table 17. High-side MOSFET manufacturer Manufacturer ST ST The power dissipation of the low-side MOSFET is given by: Equation 17 Maximum conduction losses occur at the maximum input voltage: Equation 18 Choose a synchronous rectifier with low R fast variation of the phase node voltage can bring up even the low-side gate through its gate-drain capacitance CRSS, causing cross-conduction problems ...

Page 42

... Table 21. Schottky diode manufacturer Manufacturer 42/50 Forward voltage Series (V) STPS1L30M 0.34 STPS1L20M 0.37 Forward voltage Series (V) BAT54S 0.24 BAR43A 0.35 BAS69-04 0.35 Doc ID 15281 Rev 4 PM6686 Rated reverse Reverse current voltage (V) (μA) 30 0.00039 20 0.000075 Rated reverse Max forward voltage (V) current (A) 40 0.3 30 0.1 15 0.01 ...

Page 43

... PM6686 11.3 Other important components 11.3.1 VIN filter A VIN pin low pass filter is suggested to reduce switching noise. The low pass filter is shown in the next figure: Figure 55. VIN pin filter   Typical component value is µF. 11.3.2 PVCC and VCC PVCC and VCC are connected with an internal resistor (about 10 Ω); this allows reducing the external components ...

Page 44

... MOSFET during turn on phase. A typical value is 100 nF. A resistor RBOOT on the BOOT pin could be added in order to reduce noise when the phase node rises up, working like a gate resistor for the turn on phase of the high-side MOSFET. A typical value is R 44/50 RBOOT CBOOT Ω. BOOT Doc ID 15281 Rev 4 PM6686 RBOOT PHASE ...

Page 45

... PCB design guidelines The layout is very important in terms of efficiency, stability and noise of the system possible to refer to the PM6686 demonstration board for a complete layout example. For good PC board layout follows these guidelines: ● Place on the top side all the power components (inductors, input and output capacitors, MOSFETs and diodes) ...

Page 46

... PCB design guidelines Figure 58. Current paths, ground connection and driver traces layout 46/50 Doc ID 15281 Rev 4 PM6686 ...

Page 47

... PM6686 13 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ® ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK trademark. Table 22. VFQFPN 5x5x1 pitch 0.50 mechanical data Dim ...

Page 48

... Package mechanical data Figure 59. Package dimensions 48/50 Doc ID 15281 Rev 4 PM6686 ...

Page 49

... PM6686 14 Revision history Table 24. Document revision history Date 09-Jan-2009 26-Feb-2009 07-May-2009 23-Jul-2009 Revision 1 Initial release 2 Updated input voltage range in coverpage 3 Updated pin 29 description in Updated Table 3 on page 4 on page 34, Section 9.2 on page 34 Doc ID 15281 Rev 4 Revision history Changes Table 2 on page 7 10, Section 8 ...

Page 50

... Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America 50/50 Please Read Carefully: © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies www.st.com Doc ID 15281 Rev 4 PM6686 ...

Related keywords