ADM1060 Analog Devices, ADM1060 Datasheet - Page 21

no-image

ADM1060

Manufacturer Part Number
ADM1060
Description
Multi Power Supply Sequencer & Supervisor
Manufacturer
Analog Devices
Datasheet

Specifications of ADM1060

# Supplies Monitored
7
Volt Monitoring Accuracy
2.5%
# Output Drivers
9
Fet Drive/enable Output
Both
Package
28 ld TSSOP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADM1060
Manufacturer:
AD
Quantity:
5 510
Part Number:
ADM1060
Manufacturer:
SIEMENS
Quantity:
5 510
Part Number:
ADM1060A
Manufacturer:
MAXIM
Quantity:
1 481
Part Number:
ADM1060ARU
Manufacturer:
AD
Quantity:
3 149
Part Number:
ADM1060ARU
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADM1060ARU-REEL7
Manufacturer:
ADI
Quantity:
2 980
Part Number:
ADM1060ARUCS
Manufacturer:
ADI
Quantity:
50
Part Number:
ADM1060ARUCZ0605R7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADM1060ARUCZ1003R7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADM1060ARUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADM1060ARUZ-REEL
Manufacturer:
ADI/亚德诺
Quantity:
20 000
PROGRAMMING
PROGRAMMABLE LOGIC BLOCK ARRAY
The ADM1060 contains a programmable logic block array
(PLBA). This block is the logical core of the device. The PLBA
(and the PDBs—see the Programmable Delay Block section)
provides the sequencing function of the ADM1060. The asser-
tion of the nine programmable driver outputs (PDO) is
controlled by the PLBA. The PLBA is comprised of nine macro-
cells, one per PDO channel. The main components of the
macrocells are two wide AND-OR gates, as shown in Figure 20.
Each AND gate represents a function (A or B) that can be used
independently to control the assertion of the PDO pin. There
are 21 inputs to each of these AND gates:
All 21 inputs are hardwired to both function A and function B
AND gates. The user can then select which of these inputs con-
trols the output. This is done using two control signals, IMK (a
masking bit, setting it ignores the relevant input) and POL (a
polarity bit, setting it inverts the input before it is applied to the
AND gate). The effect of setting these bits can be seen in
Figure 20. The inverting gate shown is an XOR gate, resulting in
the following truth table:
IMK (IGNORE)
POL (INVERT)
The logic outputs of all seven supply fault detectors
The four GPI logic inputs
The watchdog fault detector (latched and pulsed)
The delayed output of any of the other macrocells (the
output of a macrocell cannot be an input to itself, since this
would result in a nonterminating loop).
SIGNAL INPUTS
Figure 20. Simplified Programmable Logic Block Macrocell Schematic
Rev. B | Page 21 of 52
2 WIDE AND GATES
FUNCTION B
FUNCTION A
(21 INPUTS)
ENABLE
ENABLE
Table 26. Truth Table for PLB Input Inversion
POL
0
0
1
1
The last two entries in the truth table show that with the
INVERT (POL) bit set, the XOR output is always the inverse of
the input.
Similarly, the ignore gate shown is an OR gate, resulting in the
following truth table:
Table 27. Truth Table for PLB Input Masking
IMK
0
0
1
1
It can be seen here that once the IMK bit is set, the OR output is
always 1, regardless of the input, thus ignoring it. Figure 21 is a
detailed diagram of the 21 inputs and the registers required to
program them. Those shown are just for function A of PLB1,
but function B and all of the functions in the other eight PLBs
are programmed exactly the same way. An enable register allows
the user to use function A, function B, or both. The output of
functions A and/or B is input to a programmable delay block
(PDB) where a delay can be programmed on both the rising and
falling edges of an input (see the Programmable Delay Block
section). The output of this PDB block can be progammed to
invert before any of the PDO pins is asserted.
Input Signal
0
1
0
1
Input Signal
0
1
0
1
XOR Output
0
1
1
0
OR Output
0
1
1
1
PROGRAMMABLE
BLOCK
DELAY
OUTPUT
INVERT
ADM1060
PLBOUT

Related parts for ADM1060