SAM3N4B Atmel Corporation, SAM3N4B Datasheet - Page 544

no-image

SAM3N4B

Manufacturer Part Number
SAM3N4B
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM3N4B

Flash (kbytes)
256 Kbytes
Pin Count
64
Max. Operating Frequency
48 MHz
Cpu
Cortex-M3
# Of Touch Channels
32
Hardware Qtouch Acquisition
No
Max I/o Pins
79
Ext Interrupts
79
Quadrature Decoder Channels
2
Usb Speed
No
Usb Interface
No
Spi
3
Twi (i2c)
2
Uart
4
Ssc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
10
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Dac Channels
1
Dac Resolution (bits)
10
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
24
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.62 to 3.6
Fpu
No
Mpu / Mmu
no / no
Timers
6
Output Compare Channels
6
Input Capture Channels
3
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes
30.7.4
30.7.4.1
30.7.4.2
544
544
SAM3N
SAM3N
ISO7816 Mode
ISO7816 Mode Overview
Protocol T = 0
The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.
Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T =
1.
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see
on page
The USART connects to a smart card as shown in
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.
Figure 30-20. Connection of a Smart Card to the USART
When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
“USART Mode Register” on page 561
The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.
The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the I/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR).
In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.
If no parity error is detected, the I/O line remains to 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in
529).
USART
SCK
TXD
and
“PAR: Parity Type” on page
Figure
CLK
I/O
30-20. The TXD line becomes bidirec-
Smart
Card
Figure
562.
“Baud Rate Generator”
11011A–ATARM–04-Oct-10
11011A–ATARM–04-Oct-10
30-21.

Related parts for SAM3N4B