ATxmega128A3 Atmel Corporation, ATxmega128A3 Datasheet - Page 117

no-image

ATxmega128A3

Manufacturer Part Number
ATxmega128A3
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATxmega128A3

Flash (kbytes)
128 Kbytes
Pin Count
64
Max. Operating Frequency
32 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
50
Ext Interrupts
50
Usb Speed
No
Usb Interface
No
Spi
10
Twi (i2c)
2
Uart
7
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
16
Adc Resolution (bits)
12
Adc Speed (ksps)
2000
Analog Comparators
4
Resistive Touch Screen
No
Dac Channels
2
Dac Resolution (bits)
12
Temp. Sensor
Yes
Crypto Engine
AES/DES
Sram (kbytes)
8
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.6 to 3.6
Operating Voltage (vcc)
1.6 to 3.6
Fpu
No
Mpu / Mmu
no / no
Timers
7
Output Compare Channels
22
Input Capture Channels
22
Pwm Channels
22
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATxmega128A3-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128A3-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128A3-MH
Manufacturer:
ZARLINK
Quantity:
101
Part Number:
ATxmega128A3U-AU
Manufacturer:
ATMEL
Quantity:
39
Part Number:
ATxmega128A3U-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128A3U-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128A3U-MH
Manufacturer:
ATMEL
Quantity:
1
Part Number:
ATxmega128A3U-MH
Manufacturer:
ATMEL
Quantity:
929
36.2.2
8068T–AVR–12/10
rev. B
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs
2. VCC voltage scaler for AC is non-linear
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously
VCC voltage scaler for AC is non-linear
ADC has increased INL error for some operating conditions
ADC gain stage output range is limited to 2.4 V
ADC Event on compare match non-functional
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V
Accuracy lost on first three samples after switching input to ADC gain stage
Configuration of PGM and CWCM not as described in XMEGA A Manual
PWM is not restarted properly after a fault in cycle-by-cycle mode
BOD will be enabled at any reset
DAC is nonlinear and inaccurate when reference is above 2.4V or VCC - 0.6V
DAC has increased INL or noise for some operating conditions
DAC refresh may be blocked in S/H mode
Conversion lost on DAC channel B in event triggered mode
EEPROM page buffer always written when NVM DATA0 is written
Pending full asynchronous pin change interrupts will not wake the device
Pin configuration does not affect Analog Comparator Output
NMI Flag for Crystal Oscillator Failure automatically cleared
Writing EEPROM or Flash while reading any of them will not work
Crystal start-up time required after power-save even if crystal is source for RTC
RTC Counter value not correctly read after sleep
Pending asynchronous RTC-interrupts will not wake up device
TWI Transmit collision flag not cleared on repeated start
Clearing TWI Stop Interrupt Flag may lock the bus
TWI START condition at bus timeout will cause transaction to be dropped
TWI Data Interrupt Flag (DIF) erroneously read as set
WDR instruction inside closed window will not issue reset
simultaneously
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then
selected/deselected as input for another AC, the first comparator will be affected for up to
1 µs and could potentially give a wrong comparison result.
Problem fix/Workaround
If the Bandgap is required for both ACs simultaneously, configure the input selection for both
ACs before enabling any of them.
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.
XMEGA A3
117

Related parts for ATxmega128A3