ATtiny861 Automotive Atmel Corporation, ATtiny861 Automotive Datasheet - Page 165

no-image

ATtiny861 Automotive

Manufacturer Part Number
ATtiny861 Automotive
Description
Manufacturer
Atmel Corporation

Specifications of ATtiny861 Automotive

Flash (kbytes)
8 Kbytes
Pin Count
20
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
16
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 150
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
No
Calibrated Rc Oscillator
Yes
20.4
20.5
20.6
20.6.1
7753F–AVR–01/11
Software Break Points
Limitations of debugWIRE
Register Description
DWDR – debugWire Data Register
When designing a system where debugWIRE will be used, the following observations must be
made for correct operation:
• Pull-Up resistor on the dW/(RESET) line must be in the range of 10k to 20 k . However, the
• Connecting the RESET pin directly to V
• Capacitors inserted on the RESET pin must be disconnected when using debugWire.
• All external reset sources must be disconnected.
debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a
Break Point in AVR Studio
tion replaced by the BREAK instruction will be stored. When program execution is continued, the
stored instruction will be executed before continuing from the Program memory. A break can be
inserted manually by putting the BREAK instruction in the program.
The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.
The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e.,
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the I/O Registers via the debugger (AVR Studio).
A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.
The following section describes the registers used with the debugWire.
The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.
Bit
0x20 (0x40)
Read/Write
Initial Value
pull-up resistor is optional.
7
R/W
0
6
R/W
0
®
will insert a BREAK instruction in the Program memory. The instruc-
R/W
5
0
ATtiny261/ATtiny461/ATtiny861
CC
4
R/W
0
will not work.
DWDR[7:0]
R/W
3
0
2
R/W
0
1
R/W
0
0
R/W
0
DWDR
165

Related parts for ATtiny861 Automotive