EPM570F100C4N Altera, EPM570F100C4N Datasheet - Page 9

IC MAX II CPLD 570 LE 100-FBGA

EPM570F100C4N

Manufacturer Part Number
EPM570F100C4N
Description
IC MAX II CPLD 570 LE 100-FBGA
Manufacturer
Altera
Series
MAX® IIr
Datasheets

Specifications of EPM570F100C4N

Programmable Type
In System Programmable
Delay Time Tpd(1) Max
5.4ns
Voltage Supply - Internal
2.5V, 3.3V
Number Of Logic Elements/blocks
570
Number Of Macrocells
440
Number Of I /o
76
Operating Temperature
0°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
100-FBGA
Voltage
2.5V, 3.3V
Memory Type
FLASH
Number Of Logic Elements/cells
570
Family Name
MAX II
# Macrocells
440
Frequency (max)
2.3148GHz
Propagation Delay Time
7ns
Number Of Logic Blocks/elements
57
# I/os (max)
76
Operating Supply Voltage (typ)
2.5/3.3V
In System Programmable
Yes
Operating Supply Voltage (min)
2.375V
Operating Supply Voltage (max)
3.6V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
100
Package Type
FBGA
No. Of I/o's
76
Propagation Delay
7ns
Global Clock Setup Time
1.5ns
Frequency
247.5MHz
Supply Voltage Range
2.375V To 2.625V, 3V To 3.6V
Operating Temperature Range
0°C To +85°C
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Features
-
Lead Free Status / Rohs Status
Compliant
Other names
544-1716

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EPM570F100C4N
Manufacturer:
ALTERA
Quantity:
12 388
Part Number:
EPM570F100C4N
Manufacturer:
ALTERA
Quantity:
325
Part Number:
EPM570F100C4N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EPM570F100C4N
Manufacturer:
ALTERA
0
Part Number:
EPM570F100C4N
Manufacturer:
ALTERA/阿尔特拉
Quantity:
20 000
Introduction
Functional Description
© October 2008 Altera Corporation
MII51002-2.2
This chapter describes the architecture of the MAX II device and contains the
following sections:
MAX
implement custom logic. Row and column interconnects provide signal interconnects
between the logic array blocks (LABs).
The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a
small unit of logic providing efficient implementation of user logic functions. LABs
are grouped into rows and columns across the device. The MultiTrack interconnect
provides fast granular timing delays between LABs. The fast routing between LEs
provides minimum timing delay for added levels of logic versus globally routed
interconnect structures.
The MAX II device I/O pins are fed by I/O elements (IOE) located at the ends of LAB
rows and columns around the periphery of the device. Each IOE contains a
bidirectional I/O buffer with several advanced features. I/O pins support Schmitt
trigger inputs and various single-ended standards, such as 66-MHz, 32-bit PCI, and
LVTTL.
MAX II devices provide a global clock network. The global clock network consists of
four global clock lines that drive throughout the entire device, providing clocks for all
resources within the device. The global clock lines can also be used for control signals
such as clear, preset, or output enable.
“Functional Description” on page 2–1
“Logic Array Blocks” on page 2–4
“Logic Elements” on page 2–6
“MultiTrack Interconnect” on page 2–12
“Global Signals” on page 2–16
“User Flash Memory Block” on page 2–18
“MultiVolt Core” on page 2–22
“I/O Structure” on page 2–23
®
II devices contain a two-dimensional row- and column-based architecture to
2. MAX II Architecture
MAX II Device Handbook

Related parts for EPM570F100C4N