CY7C924ADX-AC Cypress Semiconductor Corp, CY7C924ADX-AC Datasheet - Page 42

no-image

CY7C924ADX-AC

Manufacturer Part Number
CY7C924ADX-AC
Description
Manufacturer
Cypress Semiconductor Corp
Datasheet

Specifications of CY7C924ADX-AC

Number Of Transceivers
1
Data Rate
622Mbps
Operating Supply Voltage (typ)
5V
Supply Current (max)
250mA
Screening Level
Commercial
Pin Count
100
Mounting
Surface Mount
Package Type
TQFP
Operating Supply Voltage (min)
4.5V
Operating Supply Voltage (max)
5.5V
Operating Temperature (min)
0C
Operating Temperature (max)
70C
Lead Free Status / RoHS Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CY7C924ADX-AC
Manufacturer:
CY
Quantity:
1 383
Part Number:
CY7C924ADX-AC
Manufacturer:
CYPRESS
Quantity:
745
Part Number:
CY7C924ADX-AC
Manufacturer:
CY
Quantity:
1 000
Part Number:
CY7C924ADX-AC
Manufacturer:
CYPRESS/赛普拉斯
Quantity:
20 000
Document #: 38-02008 Rev. *E
model is that of a FIFO with active LOW FIFO status flags and
read/write enables.
The Cascade timing model is a modification of the UTOPIA
configuration that changes the flags and FIFO read/write
enables to active HIGH. This model is present primarily to
allow depth expansion of the internal FIFO by direct coupling
to external CY7C42x5 synchronous FIFOs. To allow this direct
coupling, the FIFO flag active levels and cycle-to-cycle timing
between the transmit enable (TXEN*) and data latching are
modified to ensure correct data transfer.
These four configurations of bus operation and timing/control
can all be used with or without external FIFOs. Depending on
the specific mode selected, the amount of external hardware
necessary to properly couple the CY7C924ADX to state
machines or external FIFOs is minimal in all cases, and may
be zero if the proper configuration is selected.
UTOPIA Interface Background
The UTOPIA interface is defined by the ATM Forum as the bus
interface between the ATM and PHY layer devices of an ATM
system. This interface is defined as 8 or 16 bits wide, with the
latter reserved mainly for high-speed physical interfaces
(PHYs) such as 622 Mbps OC-12. Due to the limited speed
range of the CY7C924, only the 8-bit interface is implemented.
UTOPIA-1 was the original UTOPIA specification (created in
1993) which covers transport of:
The UTOPIA-1 interface has a maximum clock rate of 25 MHz.
All AC-timing and pin descriptions are covered in the
UTOPIA-1 Specification, Version 2.01.
UTOPIA-2 was created as an addendum to the UTOPIA-1
specification. In this revision, the parallel interface was
extended to both 33 MHz and 50 MHz to accommodate PCI
bus architectures in ATM designs. A method of addressing
was added to allow multiple devices (PHYs) to share a
common host bus. Also, a description of a management
interface was added (not supported by this device).
The CY7C924ADX contains all pins necessary to support the
UTOPIA-1 and, through use of an external address decoder,
can emulate the multi-PHY capability of a UTOPIA-2 interface.
The maximum bus speed supports the full 50 MHz I/O rate for
emerging high-performance systems.
UTOPIA Address Match and Selection
All actions on a UTOPIA-2 interface are controlled by the
Address Match and selection states of the interface. These
states control the read and write access to the Receive and
Transmit FIFOs, access to the FIFO status flags, reset of the
Transmit and Receive FIFOs, and read and write access to the
Serial Address Register. The CY7C924ADX supports the
concept of an “address match” through a single Address
Match (AM*) input.
• 155.52 Mbps (scrambled SONET/OC-3)
• 155.52 Mbps (8B/10B block coded at 194.4 MBaud)
• 100 Mbps (4B/5B encoded TAXI)
• 44.736 Mbps (DS-3/T3)
• 51.84 Mbps (OC-1)
Address Match and FIFO Flag Access
The CY7C924ADX makes use of a single active-LOW
Address Match (AM*) to generate address-match conditions.
When this input is LOW it is equivalent to an ATM address
compare on both the TXADDR and RXADDR buses. This
allows multiple CY7C924ADX devices to share a common
bus, with device output three-state controls being managed by
either an address match condition (AM* sampled LOW), or by
a selection state.
The Transmit and Receive FIFO flag empty and FIFO full
output drivers are enabled in any TXCLK, REFCLK, or RXCLK
cycle following AM* being sampled asserted (LOW) by the
rising edge of the respective clock. The AM* input is sampled
separately by the clocks for the transmit and receive inter-
faces, which allows these clocks to operate at different clock
rates. An example of both Transmit and Receive FIFO flag
access is shown in
When the Transmit FIFO is enabled (FIFOBYP* is HIGH) and
AM* is sampled LOW by the rising edge of TXCLK, the output
drivers for the TXFULL* and TXEMPTY* FIFO flags are
enabled. When AM* is sampled HIGH by the rising edge of
TXCLK, these same output drivers are disabled.
When the Transmit FIFO is bypassed (FIFOBYP* is LOW and
not in byte-packed mode) and AM* is sampled LOW by the
rising edge of REFCLK, the output drivers for the TXFULL*
and TXEMPTY* FIFO flags are enabled. When AM* is
sampled HIGH by the rising edge of REFCLK, the FIFO flag
output drivers are disabled.
When AM* is sampled LOW by the rising edge of RXCLK
(input or output), the output drivers for the RXFULL* and
RXEMPTY* FIFO flags are enabled. When AM* is sampled
HIGH by the rising edge of RXCLK, the FIFO flag output
drivers are disabled.
RXEMPTY*
TXFULL*
TXCLK
RXCLK
AM*
AM*
Figure 8. FIFO Flag Driver Enables
Figure
Transmit Port Addressing
Receive Port Addressing
8.
Valid
Valid
CY7C924ADX
Page 42 of 58
[+] Feedback

Related parts for CY7C924ADX-AC