AD974AR Analog Devices Inc, AD974AR Datasheet - Page 6

no-image

AD974AR

Manufacturer Part Number
AD974AR
Description
A/D Converter (A-D) IC
Manufacturer
Analog Devices Inc
Type
Data Acquisition System (DAS)r
Datasheet

Specifications of AD974AR

Package/case
28-SOIC
Features
4?Ch., 200kSPS Data Acquisition System
Interface Type
Serial
Number Of Bits
16
Number Of Channels
4
Mounting Type
Surface Mount
Rohs Status
RoHS non-compliant
Resolution (bits)
16 b
Sampling Rate (per Second)
200k
Data Interface
Serial
Voltage Supply Source
Analog and Digital
Voltage - Supply
5V
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
For Use With
EVAL-AD974CB - BOARD EVAL FOR AD974
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD974AR
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD974ARS
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD974ARSZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD974ARZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
DEFINITION OF SPECIFICATIONS
INTEGRAL NONLINEARITY ERROR (INL)
Linearity error refers to the deviation of each individual code
from a line drawn from “negative full scale” through “positive
full scale.” The point used as “negative full scale” occurs 1/2 LSB
before the first code transition. “Positive full scale” is defined as
a level 1 1/2 LSB beyond the last code transition. The deviation
is measured from the middle of each particular code to the true
straight line.
DIFFERENTIAL NONLINEARITY ERROR (DNL)
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. It
is often specified in terms of resolution for which no missing
codes are guaranteed.
FULL-SCALE ERROR
The last + transition (from 011 . . . 10 to 011 . . . 11) should
occur for an analog voltage 1 1/2 LSB below the nominal full
scale (9.9995422 V for a 10 V range). The full-scale error is
the deviation of the actual level of the last transition from the
ideal level.
BIPOLAR ZERO ERROR
Bipolar zero error is the difference between the ideal midscale
input voltage (0 V) and the actual voltage producing the mid-
scale output code.
UNIPOLAR ZERO ERROR
In unipolar mode, the first transition should occur at a level
1/2 LSB above analog ground. Unipolar zero error is the devia-
tion of the actual transition from that point.
AD974
–6–
SPURIOUS FREE DYNAMIC RANGE
The difference, in decibels (dB), between the rms amplitude of
the input signal and the peak spurious signal.
TOTAL HARMONIC DISTORTION (THD)
THD is the ratio of the rms sum of the first six harmonic com-
ponents to the rms value of a full-scale input signal and is ex-
pressed in decibels.
SIGNAL TO (NOISE AND DISTORTION) (S/[N+D]) RATIO
S/(N+D) is the ratio of the rms value of the measured input
signal to the rms sum of all other spectral components below
the Nyquist frequency, including harmonics but excluding dc.
The value for S/(N+D) is expressed in decibels.
FULL POWER BANDWIDTH
The full power bandwidth is defined as the full-scale input fre-
quency at which the S/(N+D) degrades to 60 dB, 10 bits of
accuracy.
APERTURE DELAY
Aperture delay is a measure of the acquisition performance, and
is measured from the falling edge of the R/C input to when the
input signal is held for a conversion.
TRANSIENT RESPONSE
The time required for the AD974 to achieve its rated accuracy
after a full-scale step function is applied to its input.
OVERVOLTAGE RECOVERY
The time required for the ADC to recover to full accuracy after
an analog input signal 150% of full-scale is reduced to 50% of
the full-scale value.
REV. A

Related parts for AD974AR