5M240ZT100C5N Altera, 5M240ZT100C5N Datasheet - Page 20

no-image

5M240ZT100C5N

Manufacturer Part Number
5M240ZT100C5N
Description
IC CPLD FLASH, 192, 7.5NS, 118.3MHZ, TQFP-100
Manufacturer
Altera
Series
MAX Vr

Specifications of 5M240ZT100C5N

Cpld Type
FLASH
No. Of Macrocells
192
No. Of I/o's
79
Propagation Delay
7.5ns
Global Clock Setup Time
4.6ns
Frequency
118.3MHz
Supply Voltage Range
1.71V To 1.89V
Rohs Compliant
Yes
Programmable Type
In System Programmable
Delay Time Tpd(1) Max
7.5ns
Voltage Supply - Internal
1.71 V ~ 1.89 V
Number Of Logic Elements/blocks
240
Number Of Macrocells
192
Number Of Gates
-
Number Of I /o
79
Operating Temperature
0°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
100-TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
5M240ZT100C5N
Manufacturer:
ALTERA45
Quantity:
895
Part Number:
5M240ZT100C5N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
5M240ZT100C5N
Manufacturer:
ALTERA
0
Part Number:
5M240ZT100C5N
Manufacturer:
ALTERA/阿尔特拉
Quantity:
20 000
Part Number:
5M240ZT100C5N
0
Part Number:
5M240ZT100C5N+CODE
Manufacturer:
ALTERA
0
2–14
MultiTrack Interconnect
MAX V Device Handbook
In the MAX V architecture, connections between LEs, the UFM, and device I/O pins
are provided by the MultiTrack interconnect structure. The MultiTrack interconnect
consists of continuous, performance-optimized routing lines used for inter- and
intra-design block connectivity. The Quartus II Compiler automatically places critical
design paths on faster interconnects to improve design performance.
The MultiTrack interconnect consists of row and column interconnects that span fixed
distances. A routing structure with fixed length resources for all devices allows
predictable and short delays between logic levels instead of large delays associated
with global or long routing lines. Dedicated row interconnects route signals to and
from LABs within the same row. These row resources include:
The DirectLink interconnect allows an LAB to drive into the local interconnect of its
left and right neighbors. The DirectLink interconnect provides fast communication
between adjacent LABs and blocks without using row interconnect resources.
The R4 interconnects span four LABs and are used for fast row connections in a
four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or
right.
can drive and be driven by row IOEs. For LAB interfacing, a primary LAB or
horizontal LAB neighbor can drive a given R4 interconnect. For R4 interconnects that
drive to the right, the primary LAB and right neighbor can drive on to the
interconnect. For R4 interconnects that drive to the left, the primary LAB and its left
neighbor can drive on to the interconnect. R4 interconnects can drive other R4
interconnects to extend the range of LABs they can drive. R4 interconnects can also
drive C4 interconnects for connections from one row to another.
DirectLink interconnects between LABs
R4 interconnects traversing four LABs to the right or left
Figure 2–10
shows R4 interconnect connections from an LAB. R4 interconnects
December 2010 Altera Corporation
Chapter 2: MAX V Architecture
MultiTrack Interconnect

Related parts for 5M240ZT100C5N