NCP1250ASN65T1G ON Semiconductor, NCP1250ASN65T1G Datasheet - Page 12

IC PWM CTLR OCP LATCH 6-TSOP

NCP1250ASN65T1G

Manufacturer Part Number
NCP1250ASN65T1G
Description
IC PWM CTLR OCP LATCH 6-TSOP
Manufacturer
ON Semiconductor
Datasheet

Specifications of NCP1250ASN65T1G

Output Isolation
Isolated
Frequency Range
61kHz ~ 71kHz
Voltage - Input
9.4 V ~ 28 V
Voltage - Output
12V
Operating Temperature
-40°C ~ 125°C
Package / Case
6-TSOP (0.063", 1.60mm Width)
Number Of Outputs
1
Duty Cycle (max)
84 %
Output Current
300 mA
Mounting Style
SMD/SMT
Switching Frequency
65 KHz
Operating Supply Voltage
28 V
Supply Current
2.1 mA
Maximum Operating Temperature
+ 125 C
Fall Time
30 ns
Minimum Operating Temperature
- 40 C
Rise Time
40 ns
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
NCP1250ASN65T1G
Manufacturer:
ON Semiconductor
Quantity:
1 250
Part Number:
NCP1250ASN65T1G
Manufacturer:
ON/安森美
Quantity:
20 000
Company:
Part Number:
NCP1250ASN65T1G
Quantity:
3 000
Introduction
architecture where the switch−off event is dictated by the
peak current setpoint. This component represents the ideal
candidate where low part−count and cost effectiveness are
the key parameters, particularly in low−cost ac−dc adapters,
open−frame power supplies etc. Capitalizing on the
NCP120X series success, the NCP1250 packs all the
necessary components normally needed in today modern
power supply designs, bringing several enhancements such
as a non−dissipative OPP.
The NCP1250 implements a standard current mode
Current−mode operation with internal ramp
compensation: Implementing peak current mode
control at a fixed 65 kHz or 100 kHz, the NCP1250
offers an internal ramp compensation signal that can
easily by summed with the sensed current. Sub
harmonic oscillations are eliminated via the inclusion of
a single resistor in series with the current−sense
information.
Internal OPP: By routing a portion of the negative
voltage present during the on−time on the auxiliary
winding to the dedicated OPP pin (pin 3), the user has a
simple and non−dissipative means to alter the
maximum peak current setpoint as the bulk voltage
increases. If the pin is grounded, no OPP compensation
occurs. If the pin receives a negative voltage down to
–250 mV, then a peak current reduction down to 31.3%
typical can be achieved. For an improved performance,
the maximum voltage excursion on the sense resistor is
limited to 0.8 V.
Low startup current: Achieving a low no−load
standby power always represents a difficult exercise
when the controller draws a significant amount of
current during start−up. Due to its proprietary
architecture, the NCP1250 is guaranteed to draw less
than 15 mA typical, easing the design of low standby
power adapters.
EMI jittering: An internal low−frequency modulation
signal varies the pace at which the oscillator frequency
is modulated. This helps by spreading out energy in
conducted noise analysis. To improve the EMI
signature at low power levels, the jittering remains
active in frequency foldback mode.
Frequency foldback capability: A continuous flow of
pulses is not compatible with no−load/light−load
standby power requirements. To excel in this domain,
the controller observes the feedback pin and when it
reaches a level of 1.5 V, the oscillator then starts to
APPLICATION INFORMATION
http://onsemi.com
12
Start−up Sequence
permit a large energy storage in a small V
This helps to operate with a small start−up current which,
together with a small V
start−up time. To further reduce the standby power, the
start−up current of the controller is extremely low, below
15 mA maximum. The start−up resistor can therefore be
connected to the bulk capacitor or directly to the mains input
voltage to further reduce the power dissipation.
The NCP1250 start−up voltage is made purposely high to
reduce its switching frequency as the feedback level
continues to decrease. When the feedback pin reaches
1.05 V, the peak current setpoint is internally frozen and
the frequency continues to decrease. It can go down to
26 kHz (typical) reached for a feedback level of
roughly 350 mV. At this point, if the power continues to
drop, the controller enters classical skip−cycle mode.
Internal soft−start: A soft−start precludes the main
power switch from being stressed upon start−up. In this
controller, the soft−start is internally fixed to 4 ms. The
soft−start is activated when a new startup sequence
occurs or during an auto−recovery hiccup.
OVP input: The NCP1250 includes a latch input
(pin 3) that can be used to sense an overvoltage
condition on the adapter. If this pin is brought higher
than the internal reference voltage V
circuit permanently latches off. The V
down to a fixed level, keeping the controller latched.
The latch reset occurs when the user disconnects the
adapter from the mains and lets the V
V
Short−circuit protection: Short−circuit and especially
over−load protections are difficult to implement for
transformers with high leakage inductance between
auxiliary and power windings (the aux winding level
does not properly collapse in presence of an output
short). Here, every time the internal 0.8 V maximum
peak current limit is activated (or less when OPP is
used), an error flag is asserted and a time period starts,
thanks to an internal timer. If the timer reaches
completion while the error flag is still present, the
controller stops the pulses and goes into a latch−off
phase, operating in a low−frequency burst−mode. When
the fault is cleared, the SMPS resumes operation.
Please note that some versions offer an auto−recovery
mode as described and some latch off in case of a short
circuit.
CC
reset.
CC
capacitor, will not hamper the
latch
CC
CC
CC
, then the
falls below the
capacitor value.
pin is pulled

Related parts for NCP1250ASN65T1G