AD627ARZ Analog Devices Inc, AD627ARZ Datasheet - Page 16

IC AMP INST R-R 25MA 8SOIC

AD627ARZ

Manufacturer Part Number
AD627ARZ
Description
IC AMP INST R-R 25MA 8SOIC
Manufacturer
Analog Devices Inc
Type
Rail-to-Railr
Datasheets

Specifications of AD627ARZ

Slew Rate
0.06 V/µs
Amplifier Type
Instrumentation
Number Of Circuits
1
Output Type
Rail-to-Rail
-3db Bandwidth
80kHz
Current - Input Bias
2nA
Voltage - Input Offset
25µV
Current - Supply
60µA
Current - Output / Channel
25mA
Voltage - Supply, Single/dual (±)
2.2 V ~ 36 V, ±1.1 V ~ 18 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
8-SOIC (3.9mm Width)
No. Of Amplifiers
1
Input Offset Voltage
200µV
Gain Db Min
5dB
Gain Db Max
1000dB
Bandwidth
40MHz
Amplifier Output
Rail To Rail
Cmrr
77dB
Supply Voltage Range
± 1.1V To ±
Common Mode Rejection Ratio
90
Current, Input Bias
3 nA (Single), 2 nA (Dual)
Current, Input Offset
0.3 nA
Current, Supply
60 μA
Impedance, Thermal
155 °C/W
Package Type
SOIC-8
Power Dissipation
0.8 W
Resistance, Input
20 Gigaohms (Differential), 20 Gigaohms (Common-Mode)
Temperature, Operating, Range
-40 to +85 °C
Voltage, Gain
1000 V/V
Voltage, Input
-35.9 to +35 V (Single), -17.9 to +17 V (Dual)
Voltage, Input Offset
50 μV (Single), 25 μV (Dual)
Voltage, Noise
38 nV/sqrt Hz
Voltage, Supply
2.2 to ±18 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Gain Bandwidth Product
-
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD627ARZ
Manufacturer:
ADI
Quantity:
2
Part Number:
AD627ARZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Company:
Part Number:
AD627ARZ
Quantity:
62
Part Number:
AD627ARZ-R7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD627ARZ-REEL
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD627ARZ-REEL7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD627
Table 6. Recommended Values of Gain Resistors
Desired Gain
5
6
7
8
9
10
15
20
25
30
40
50
60
70
80
90
100
200
500
1000
REFERENCE TERMINAL
The reference terminal potential defines the zero output voltage
and is especially useful when the load does not share a precise
ground with the rest of the system. It provides a direct means of
injecting a precise offset to the output. The reference terminal is
also useful when amplifying bipolar signals, because it provides
a virtual ground voltage.
The AD627 output voltage is developed with respect to the poten-
tial on the reference terminal; therefore, tying the REF pin to the
appropriate local ground solves many grounding problems. For
optimal CMR, tie the REF pin to a low impedance point.
INPUT RANGE LIMITATIONS IN SINGLE-SUPPLY
APPLICATIONS
In general, the maximum achievable gain is determined by the
available output signal range. However, in single-supply applica-
tions where the input common-mode voltage is nearly or equal
to 0, some limitations on the gain can be set. Although the
Specifications section nominally defines the input, output, and
reference pin ranges, the voltage ranges on these pins are
mutually interdependent. Figure 37 shows the simplified
schematic of the AD627, driven by a differential voltage (V
that has a common-mode component, V
A1 op amp output is a function of V
REF pin, and the programmed gain. This voltage is given by
V
A1
= 1.25 (V
CM
+ 0.5 V) − 0.25 V
1% Standard Table
Value of R
200 kΩ
100 kΩ
68.1 kΩ
51.1 kΩ
40.2 kΩ
20 kΩ
13.7 kΩ
10 kΩ
8.06 kΩ
5.76 kΩ
4.53 kΩ
3.65 kΩ
3.09 kΩ
2.67 kΩ
2.37 kΩ
2.1 kΩ
1.05 kΩ
412 Ω
205 Ω
G
REF
− V
DIFF
DIFF
, V
CM
(25 kΩ/R
CM
. The voltage on the
, the voltage on the
Resulting Gain
5.00
6.00
7.00
7.94
8.91
9.98
15.00
19.60
25.00
29.81
39.72
49.15
59.79
69.72
79.91
89.39
100.24
195.48
490.44
980.61
G
− 0.625) (3)
DIFF
Rev. D | Page 16 of 24
)
The voltage on A1 can also be expressed as a function of the
actual voltages on the –IN and +IN pins (V− and V+) such that
V
The output of A1 is capable of swinging to within 50 mV of the
negative rail and to within 200 mV of the positive rail. It is clear,
from either Equation 3 or Equation 4, that an increasing V
(while it acts as a positive offset at the output of the AD627)
tends to decrease the voltage on A1. Figure 38 and Figure 39
show the maximum voltages that can be applied to the REF pin
for a gain of 5 for both the single-supply and dual-supply cases.
Raising the input common-mode voltage increases the voltage
on the output of A1. However, in single-supply applications
where the common-mode voltage is low, a differential input
voltage or a voltage on REF that is too high can drive the output
of A1 into the ground rail. Some low-side headroom is added
because both inputs are shifted upwards by about 0.5 V (that is,
by the V
check whether the voltage on Amplifier A1 is within its
operating range.
A1
= 1.25 ((V−) + 0.5 V) − 0.25 V
Figure 38. Reference Input Voltage vs. Negative Input Voltage,
Figure 39. Reference Input Voltage vs. Negative Input Voltage,
–1
–2
–3
–4
–5
–0.5
5
4
3
2
1
0
5
4
3
2
1
0
–6
BE
of Q1 and Q2). Use Equation 3 and Equation 4 to
–5
0
0.5
MAXIMUM V
–4
MAXIMUM V
1.0
–3
V
V
S
REF
S
1.5
= ±5 V, G = +5
–2
= 5 V, G = +5
REF
V
IN
V
2.0
–1
REF
IN
(–) (V)
(–) (V)
MINIMUM V
− ((V+) − (V−)) 25 kΩ/R
2.5
0
MINIMUM V
3.0
1
REF
3.5
2
REF
4.0
3
4.5
4
REF
G
(4)

Related parts for AD627ARZ