AT90CAN64-16AU Atmel, AT90CAN64-16AU Datasheet - Page 293

IC MCU AVR 64K FLASH 64-TQFP

AT90CAN64-16AU

Manufacturer Part Number
AT90CAN64-16AU
Description
IC MCU AVR 64K FLASH 64-TQFP
Manufacturer
Atmel
Series
AVR® 90CANr
Datasheets

Specifications of AT90CAN64-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Package
64TQFP
Device Core
AVR
Family Name
90C
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
53
Interface Type
JTAG/SPI/TWI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
4
Processor Series
AT90CANx
Core
AVR8
Data Ram Size
4 KB
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATDVK90CAN1, ATADAPCAN01
Minimum Operating Temperature
- 40 C
Controller Family/series
AVR CAN
No. Of I/o's
53
Eeprom Memory Size
2KB
Ram Memory Size
4KB
Cpu Speed
16MHz
Rohs Compliant
Yes
Cpu Family
90C
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATDVK90CAN1 - KIT DEV FOR AT90CAN128 MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90CAN64-16AU
Manufacturer:
ATMEL
Quantity:
250
Part Number:
AT90CAN64-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90CAN64-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
AT90CAN64-16AUR
Manufacturer:
Atmel
Quantity:
10 000
22. JTAG Interface and On-chip Debug System
22.1
22.2
22.3
7679H–CAN–08/08
Features
Overview
Test Access Port – TAP
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:
A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections
Programming Overview” on page 352
respectively. The On-chip Debug support is considered being private JTAG instructions, and dis-
tributed within ATMEL and to selected third party vendors only.
Figure 22-1
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI – input and TDO – output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.
The ID-Register (IDentifier Register), Bypass Register, and the Boundary-scan Chain are the
Data Registers used for board-level testing. The JTAG Programming Interface (actually consist-
ing of several physical and virtual Data Registers) is used for serial programming via the JTAG
interface. The Internal Scan Chain and Break Point Scan Chain are used for On-chip debugging
only.
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:
• Testing PCBs by using the JTAG Boundary-scan capability
• Programming the non-volatile memories, Fuses and Lock bits
• On-chip debugging
• TMS: Test mode select. This pin is used for navigating through the TAP-controller state
JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
Debugger Access to:
Extensive On-chip Debug Support for Break Conditions, Including
Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
On-chip Debugging Supported by AVR Studio
machine.
– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Break Points on Single Address or Address Range
– Data Memory Break Points on Single Address or Address Range
shows a block diagram of the JTAG interface and the On-chip Debug system. The
and
“Boundary-scan IEEE 1149.1 (JTAG)” on page
®
AT90CAN32/64/128
“JTAG
300,
293

Related parts for AT90CAN64-16AU