ATMEGA16U4-MU Atmel, ATMEGA16U4-MU Datasheet - Page 126

no-image

ATMEGA16U4-MU

Manufacturer Part Number
ATMEGA16U4-MU
Description
MCU AVR 16K FLASH 16MHZ 44-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA16U4-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
26
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1.25K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-VQFN
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
ATMEGA16U4-16MU
ATMEGA16U4-16MU
7766F–AVR–11/10
the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can
be calculated using the following equation:
In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on
PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.
Figure 14-9. Phase and Frequency Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn
is used for defining the TOP value, the OCnA or ICFn Flag set when TCNTn has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
As
cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.
Figure 14-9
TCNTn
OCnx
OCnx
Period
shows the output generated is, in contrast to the phase correct mode, symmetri-
1
Figure
R
PFCPWM
2
14-9. The figure shows phase and frequency correct
=
3
log
---------------------------------- -
(
log
TOP
2 ( )
+
1
4
)
ATmega16/32U4
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
(COMnx1:0 = 2)
(COMnx1:0 = 3)
OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)
126

Related parts for ATMEGA16U4-MU