C8051F337-GM Silicon Laboratories Inc, C8051F337-GM Datasheet - Page 38

IC MCU 16K FLASH 20QFN

C8051F337-GM

Manufacturer Part Number
C8051F337-GM
Description
IC MCU 16K FLASH 20QFN
Manufacturer
Silicon Laboratories Inc
Series
C8051F33xr
Datasheets

Specifications of C8051F337-GM

Core Processor
8051
Core Size
8-Bit
Speed
25MHz
Connectivity
SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
17
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
20-QFN
Processor Series
C8051F3x
Core
8051
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
I2C, SPI, UART
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
17
Number Of Timers
4
Operating Supply Voltage
2.7 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
KSK-SL-TOOLSTICK, PK51, CA51, A51, ULINK2
Development Tools By Supplier
C8051F336DK
Minimum Operating Temperature
- 40 C
For Use With
336-1451 - ADAPTER PROGRAM TOOLSTICK F330
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Data Converters
-
Lead Free Status / Rohs Status
 Details
Other names
336-1428-5
C8051F336/7/8/9
7.1. Output Code Formatting
The ADC is in Single-ended mode when the negative input is connected to GND. The ADC will be in Differ-
ential mode when the negative input is connected to any other option. The output code format differs
between Single-ended and Differential modes. The registers ADC0H and ADC0L contain the high and low
bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-
justified or left-justified, depending on the setting of the AD0LJST. When in Single-ended Mode, conversion
codes are represented as 10-bit unsigned integers. Inputs are measured from ‘0’ to VREF x 1023/1024.
Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H
and ADC0L registers are set to ‘0’.
When in Differential Mode, conversion codes are represented as 10-bit signed 2’s complement numbers.
Inputs are measured from –VREF to VREF x 511/512. Example codes are shown below for both right-jus-
tified and left-justified data. For right-justified data, the unused MSBs of ADC0H are a sign-extension of the
data word. For left-justified data, the unused LSBs in the ADC0L register are set to ‘0’.
7.2. Modes of Operation
ADC0 has a maximum conversion speed of 200 ksps. The ADC0 conversion clock is a divided version of
the system clock, determined by the AD0SC bits in the ADC0CF register.
7.2.1. Starting a Conversion
A conversion can be initiated in one of six ways, depending on the programmed states of the ADC0 Start of
Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the fol-
lowing:
1. Writing a ‘1’ to the AD0BUSY bit of register ADC0CN
2. A Timer 0 overflow (i.e., timed continuous conversions)
3. A Timer 2 overflow
4. A Timer 1 overflow
5. A rising edge on the CNVSTR input signal (pin P0.6)
6. A Timer 3 overflow
Writing a ‘1’ to AD0BUSY provides software control of ADC0 whereby conversions are performed "on-
demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is
38
VREF x 1023/1024
–VREF x 256/512
VREF x 512/1024
VREF x 256/1024
VREF x 256/512
VREF x 511/512
Input Voltage
Input Voltage
–VREF
0
0
Right-Justified ADC0H:ADC0L
Right-Justified ADC0H:ADC0L
(AD0LJST = 0)
(AD0LJST = 0)
0x01FF
0xFF00
0xFE00
0x0100
0x0000
0x03FF
0x0200
0x0100
0x0000
Rev.1.0
Left-Justified ADC0H:ADC0L
Left-Justified ADC0H:ADC0L
(AD0LJST = 1)
(AD0LJST = 1)
0x7FC0
0xFFC0
0xC000
0x4000
0x0000
0x8000
0x8000
0x4000
0x0000

Related parts for C8051F337-GM