ATMEGA2560V-8CU Atmel, ATMEGA2560V-8CU Datasheet - Page 281

IC MCU AVR 256K FLASH 100-CBGA

ATMEGA2560V-8CU

Manufacturer Part Number
ATMEGA2560V-8CU
Description
IC MCU AVR 256K FLASH 100-CBGA
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA2560V-8CU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
86
Program Memory Size
256KB (128K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TFBGA
Processor Series
ATMEGA256x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
8 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
86
Number Of Timers
6
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 16 Channel
Operating Supply Voltage
1.8 V to 5.5 V
For Use With
ATSTK600-TQFP100 - STK600 SOCKET/ADAPTER 100-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK503 - STARTER KIT AVR EXP MODULE 100PATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA2560V-8CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2560V-8CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2560V-8CUR
Manufacturer:
Atmel
Quantity:
10 000
25.4.1
2549M–AVR–09/10
Differential Channels
Table 25-1.
When using differential channels, certain aspects of the conversion need to be taken into
consideration.
Differential conversions are synchronized to the internal clock CK
clock. This synchronization is done automatically by the ADC interface in such a way that the
sample-and-hold occurs at a specific phase of CK
all single conversions, and the first free running conversion) when CK
same amount of time as a single ended conversion (13 ADC clock cycles from the next pres-
caled clock cycle). A conversion initiated by the user when CK
cycles due to the synchronization mechanism. In Free Running mode, a new conversion is initi-
ated immediately after the previous conversion completes, and since CK
all automatically started (that is, all but the first) Free Running conversions will take 14 ADC
clock cycles.
If differential channels are used and conversions are started by Auto Triggering, the ADC must
be switched off between conversions. When Auto Triggering is used, the ADC prescaler is reset
before the conversion is started. Since the stage is dependent of a stable ADC clock prior to the
conversion, this conversion will not be valid. By disabling and then re-enabling the ADC between
each conversion (writing ADEN in ADCSRA to “0” then to “1”), only extended conversions are
performed. The result from the extended conversions will be valid. See
sion Timing” on page 278
Condition
First conversion
Normal conversions, single ended
Auto Triggered conversions
Normal conversions, differential
ADC Conversion Time
for timing details.
ATmega640/1280/1281/2560/2561
Sample & Hold (Cycles from
Start of Conversion)
1.5/2.5
13.5
ADC2
1.5
2
. A conversion initiated by the user (that is,
ADC2
is high will take 14 ADC clock
ADC2
Conversion Time (Cycles)
“Prescaling and Conver-
ADC2
ADC2
equal to half the ADC
is low will take the
is high at this time,
13/14
13.5
25
13
281

Related parts for ATMEGA2560V-8CU