ATMEGA6450-16AU Atmel, ATMEGA6450-16AU Datasheet - Page 62

IC AVR MCU FLASH 64K 100TQFP

ATMEGA6450-16AU

Manufacturer Part Number
ATMEGA6450-16AU
Description
IC AVR MCU FLASH 64K 100TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA6450-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
68
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
Processor Series
ATMEGA64x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
SPI, UART, USI
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
69
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
100TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
For Use With
ATSTK600-TQFP100 - STK600 SOCKET/ADAPTER 100-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK504 - STARTER KIT AVR EXP MOD 100P LCD
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA6450-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA6450-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA6450-16AUR
Manufacturer:
Atmel
Quantity:
10 000
13.2.2
13.2.3
13.2.4
2570M–AVR–04/11
Toggling the Pin
Switching Between Input and Output
Reading the Pin Value
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.
If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all
pull-ups in all ports.
Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.
Table 13-1
Table 13-1.
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay.
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted t
DDxn
0
0
0
1
1
PORTxn
summarizes the control signals for the pin value.
0
1
1
0
1
Port Pin Configurations
(in MCUCR)
PUD
X
0
1
X
X
Figure
Output
Output
Input
Input
Input
I/O
13-2, the PINxn Register bit and the preceding latch con-
pd,max
Pull-up
ATmega325/3250/645/6450
Yes
No
No
No
No
and t
Tri-state (Hi-Z)
Pxn will source current if ext. pulled
low.
Tri-state (Hi-Z)
Output Low (Sink)
Output High (Source)
Comment
pd,min
respectively.
Figure 13-3
shows a timing dia-
62

Related parts for ATMEGA6450-16AU