MAX11014BGTM+ Maxim Integrated, MAX11014BGTM+ Datasheet

no-image

MAX11014BGTM+

Manufacturer Part Number
MAX11014BGTM+
Description
Special Purpose Amplifiers Auto RF MESFET Amp Drain-Current Cntrlr
Manufacturer
Maxim Integrated
Series
MAX11014, MAX11015r
Datasheet

Specifications of MAX11014BGTM+

Rohs
yes
Common Mode Rejection Ratio (min)
90 dB
Operating Supply Voltage
0.5 V to 11 V
Supply Current
2.8 mA
Maximum Power Dissipation
2162.2 mW
Maximum Operating Temperature
+ 105 C
Minimum Operating Temperature
- 40 C
Mounting Style
SMD/SMT
Package / Case
TQFN-48
Available Set Gain
13.98 dB
The MAX11014/MAX11015 set and control bias condi-
tions for dual MESFET power devices found in point-to-
point communication and other microwave base
stations. The MAX11014 integrates complete dual ana-
log closed-loop drain-current controllers for Class A
MESFET amplifier operation, while the MAX11015 tar-
gets Class AB operation. Both devices integrate SRAM
lookup tables (LUTs) that can be used to store temper-
ature and drain-current compensation data.
Each device includes dual high-side current-sense
amplifiers to monitor the MESFET drain currents through
the voltage drop across the sense resistors in the 0 to
625mV range. External diode-connected transistors mon-
itor the MESFET temperatures while an internal tempera-
ture sensor measures the local die temperature of the
MAX11014/MAX11015. The internal DAC sets the volt-
ages across the current-sense resistors by controlling
the GATE voltages. The internal 12-bit SAR ADC digitizes
internal and external temperature, internal DAC voltages,
current-sense amplifier voltages, and external GATE volt-
ages. Two of the 11 ADC channels are available as gen-
eral-purpose analog inputs for analog system monitoring.
The MAX11014’s gate-drive amplifier functions as an
integrator for the Class A drain-current control loop
while the MAX11015’s gate-drive amplifier functions
with a gain of -2 for Class AB applications. The current-
limited gate-drive amplifier can be fast clamped to an
external voltage independent of the digital input from
the serial interface. Both the MAX11014 and the
MAX11015 include self-calibration modes to minimize
error over time, temperature, and supply voltage.
The MAX11014/MAX11015 feature an internal reference
and can operate from separate ADC and DAC external
references. The internal reference provides a well-regu-
lated, low-noise +2.5V reference for the ADC, DAC, and
temperature sensors. These integrated circuits operate
from a 4-wire 20MHz SPI™-/MICROWIRE™-compatible
or 3.4MHz I
table). Both devices operate from a +4.75V to +5.25V
analog supply (2.8mA typical supply current), a +2.7V
to +5.25V digital supply (1.5mA typical supply current),
and a -4.5V to -5.5V negative supply (1.1mA supply
current). The MAX11014/MAX11015 are available in a
48-pin thin QFN package specified over the -40°C to
+105°C temperature range.
19-3985; Rev 3; 11/08
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
2
C-compatible serial interface (pin-selec-
________________________________________________________________ Maxim Integrated Products
General Description
Automatic RF MESFET Amplifier
Drain-Current Controllers
♦ Dual Drain-Current-Sense Gain Amplifier
♦ Common-Mode Sense-Resistor Voltage Range
♦ Low-Noise Output GATE Bias with ±10mA GATE
♦ Fast Clamp and Power-On Reset
♦ 12-Bit DAC Controls MESFET GATE Voltage
♦ Internal Temperature Sensor/Dual Remote Diode
♦ Internal 12-Bit ADC Measures Temperature and
♦ Pin-Selectable Serial Interface
+ Denotes a lead-free package.
* Future product—contact factory for availability.
** EP = Exposed pad.
Note: All devices are specified over the -40°C to +105°C operating
temperature range.
Pin Configuration and Typical Operating Circuit appear at end
of data sheet.
SPI is a trademark of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.
MAX11014BGTM+
MAX11015BGTM+*
Cellular Base-Station RF MESFET Bias Controllers
Point-to-Point or Point-to-Multipoint Links
Industrial Process Control
Drive
Temperature Sensors
Voltage
Preset Gain of 4
±0.5% Accuracy for Sense Voltages Between
75mV and 625mV (MAX11014)
0.5V to 11V (MAX11014)
5V to 32V (MAX11015)
3.4MHz I
20MHz SPI-/MICROWIRE-Compatible Interface
PART
2
C-Compatible Interface
PIN-PACKAGE
48 Thin QFN-EP**
48 Thin QFN-EP**
Ordering Information
Applications
Features
AMPLIFIER
Class AB
Class A
1

Related parts for MAX11014BGTM+

MAX11014BGTM+ Summary of contents

Page 1

... Internal 12-Bit ADC Measures Temperature and Voltage ♦ Pin-Selectable Serial Interface 3.4MHz I 20MHz SPI-/MICROWIRE-Compatible Interface PART MAX11014BGTM+ MAX11015BGTM+* + Denotes a lead-free package. * Future product—contact factory for availability Exposed pad. Note: All devices are specified over the -40°C to +105°C operating temperature range ...

Page 2

Automatic RF MESFET Amplifier Drain-Current Controllers ABSOLUTE MAXIMUM RATINGS AV to AGND .........................................................-0. DGND.........................................................-0.3V to +6V DD AGND to DGND.....................................................-0.3V to +0. AGND ...........................................................-0.3V to -6V SS RCS1+, RCS1-, RCS2+, RCS2- to GATEV ...

Page 3

ELECTRICAL CHARACTERISTICS (continued -5.5V to -4.75V, V GATEVSS AVSS V = +2.5V REFDAC REFADC REFDAC C = 1nF FILT4 AGND DGND ADCIN0 All typical values are at ...

Page 4

Automatic RF MESFET Amplifier Drain-Current Controllers ELECTRICAL CHARACTERISTICS (continued -5.5V to -4.75V, V GATEVSS AVSS V = +2.5V REFDAC REFADC REFDAC C = 1nF FILT4 AGND DGND ...

Page 5

ELECTRICAL CHARACTERISTICS (continued -5.5V to -4.75V, V GATEVSS AVSS V = +2.5V REFDAC REFADC REFDAC C = 1nF FILT4 AGND DGND ADCIN0 All typical values are at ...

Page 6

Automatic RF MESFET Amplifier Drain-Current Controllers SPI-INTERFACE TIMING CHARACTERISTICS (Note 9) (See Figure 1.) PARAMETER SYMBOL SCLK Clock Period t CP SCLK High Time t CH SCLK Low Time t CL DIN to SCLK Rise Setup Time t DS DIN ...

Page 7

I C-WIRE-INTERFACE HIGH-SPEED-MODE TIMING CHARACTERISTICS (Note 9) (See Figure 3.) PARAMETER SYMBOL Serial Clock Frequency Setup Time (Repeated) START Condition Hold Time (Repeated) START Condition SCL Pulse-Width Low SCL Pulse-Width High Data Setup Time Data Hold Time t SCL ...

Page 8

Automatic RF MESFET Amplifier Drain-Current Controllers MISCELLANEOUS TIMING CHARACTERISTICS PARAMETER SYMBOL Minimum Time to Wait After a Write Command Before t RDBK Reading Back Data from the Same Location CNVST Active-Low Pulse t CNV01 Width in ADC Clock Mode 01 ...

Page 9

MISCELLANEOUS TIMING CHARACTERISTICS (continued) Note 1: All current-sense amplifier specifications are tested after a current-sense calibration (valid when drain current = 0mA). See RCS Error vs. GATE Current in the Typical Operating Characteristics . The calibration is valid only at ...

Page 10

Automatic RF MESFET Amplifier Drain-Current Controllers CS t CSS t CL SCLK DIN t DV DOUT Figure 1. SPI Serial-Interface Timing Diagram SDA LOW F R SCL t HD;STA t HD;DAT ...

Page 11

+5V, GATEV GATEVSS AVDD DVDD 0.1µ unless otherwise noted.) A MIN MAX DIGITAL SUPPLY CURRENT vs. DIGITAL SUPPLY VOLTAGE 5.25V ...

Page 12

Automatic RF MESFET Amplifier Drain-Current Controllers (V = -5.5V +5V, GATEV GATEVSS AVDD DVDD 0.1µ unless otherwise noted.) A MIN MAX DAC DIFFERTIAL NONLINEARITY vs. OUTPUT CODE 1.00 0.75 0.50 ...

Page 13

+5V, GATEV GATEVSS AVDD DVDD 0.1µ unless otherwise noted.) A MIN MAX DAC INTERNAL REFERENCE VOLTAGE vs. SUPPLY VOLTAGE 2.5018 2.5016 2.5014 ...

Page 14

Automatic RF MESFET Amplifier Drain-Current Controllers PIN NAME Serial Data Input. Data is latched into the serial interface on the rising edge of SCLK in SPI mode. 1 DIN/SDA Connect a pullup resistor to SDA in I Serial Data Output ...

Page 15

Automatic RF MESFET Amplifier PIN NAME Channel 2 Current-Sense-Resistor Connection. Connect to the external supply powering channel 2’s MESFET drain, in the range of +0.5V to +11V (MAX11014) or +5V to +32V (MAX11015). Bypass with 30 RCS2+ a 1µF and ...

Page 16

Automatic RF MESFET Amplifier Drain-Current Controllers Detailed Description The MAX11014/MAX11015 set and monitor the bias con- ditions for dual MESFET power devices found in cellular base stations and point-to-point microwave links. The internal DAC sets the voltage across the current-sense ...

Page 17

REGISTER OPSAFE1 OPSAFE2 DV DD DGND DIGITAL CONTROL 12-BIT REGISTER REGISTER MAP ADC CONTROL ADC CHANNEL SELECT DAC CONTROL DAC CHANNEL SELECT SENSE VOLTAGE CONTROL ALARM ALARM LIMIT RESET VOLTAGE/TEMPERATURE DIGITAL ALARM COMPARATOR 12-BIT DAC CODE 48-ENTRY INTERPOLATING TEMPERATURE ...

Page 18

Automatic RF MESFET Amplifier Drain-Current Controllers Once the control loop has been set, the MAX11014 automatically maintains the drain-current value. Figure 5 details the amplifiers that bias the channel 1 and channel 2 control loops. The dual current-sense amplifiers amplify ...

Page 19

CS/A0 SCLK/SCL DIN/SDA SERIAL INTERFACE DOUT/A1 N.C./A2 MAX11014 Figure 5. MAX11014 Class A Analog Control Loop ______________________________________________________________________________________ Automatic RF MESFET Amplifier Drain-Current Controllers PGAOUT1 CURRENT-SENSE CHANNEL 1 ADC 100kΩ 580kΩ CHANNEL 1 + DAC CURRENT-SENSE CHANNEL 2 ADC 100kΩ 580kΩ ...

Page 20

Automatic RF MESFET Amplifier Drain-Current Controllers CS/A0 SCLK/SCL DIN/SDA SERIAL DOUT/A1 INTERFACE N.C./A2 Figure 6. MAX11015 Class AB Analog Control 20 ______________________________________________________________________________________ PGAOUT1 CHANNEL 1 CURRENT-SENSE ADC 580kΩ CHANNEL 1 DAC CHANNEL 2 CURRENT-SENSE ADC 580kΩ CHANNEL 2 DAC MAX11015 ...

Page 21

GATE MESFET ENTERED VOLTAGE DAC CODE 0V FULLY REFDAC OFF Figure 7. DAC Code Range Connect the MESFET drain to the RCS_- input. Connect the MESFET’s gate to the GATE_ output. Set the GATE_ voltage to ...

Page 22

Automatic RF MESFET Amplifier Drain-Current Controllers ADCIN1, ADCIN2 AGND Figure 8. ADC Equivalent Input Circuit filter that limits the analog-input bandwidth. Analog Input Protection Internal ESD protection diodes clamp ADCIN1/ADCIN2 to AV and AGND, allowing them to swing from DD ...

Page 23

ADCCON (Write) section, Figure 31, and Figure 32. The temperature-sensor circuits remain powered up when the ADC conversion register’s continuous convert bit (CONCONV) is set to 1 and the current ADC conver- sion includes a temperature channel. The temperature- sensor ...

Page 24

Automatic RF MESFET Amplifier Drain-Current Controllers ADC/DAC References The MAX11014/MAX11015 provide an internal low- noise +2.5V reference for the ADCs, DACs, and tem- perature sensors. Set bits D3–D0 within the hardware configuration register to control the source of the DAC ...

Page 25

CS SCLK DIN (MSB) Figure 9. MAX11014/MAX11015 Write Timing CS SCLK DIN (MSB) DOUT X = DON'T CARE. NOTE: DOUT MAY BE DRIVEN CLOCK CYCLES ...

Page 26

Automatic RF MESFET Amplifier Drain-Current Controllers C Compatibility (SPI/ I2C = DGND The MAX11014/MAX11015 communicate through C-compatible 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and ...

Page 27

S SDA SCL Figure 12. Acknowledge Bits SDA SCL 1 2 SLAVE ADDRESS BITS A2, A1, AND A0 CORRESPOND TO THE LOGIC STATE OF ADDRESS-SELECT INPUT PINS A2, A1, AND A0. Figure 13. Slave Address Byte Acknowledge ...

Page 28

Automatic RF MESFET Amplifier Drain-Current Controllers Transfer from F/S mode to HS mode by addressing all devices on the bus with the HS-mode master code 0000 1XXX (X = don’t care). After successfully receiv- ing the HS-mode master code, the ...

Page 29

Command Byte/Data Bytes (Read Cycle) Begin a read cycle by issuing a START condition fol- lowed by writing a 7-bit address (Figure 18) and a read bit (R/W = 1). After writing the 8th bit, the MAX11014/MAX11015 (the slave) issue ...

Page 30

Automatic RF MESFET Amplifier Drain-Current Controllers SCL SDA SDA IN DIRECTION SCL SDA D15 D14 D13 D12 D11 SDA IN DIRECTION 2 Figure 17. MAX11014/MAX11015 I C Write Timing SCL SDA ...

Page 31

SCL SDA SDA IN DIRECTION SCL SDA OUT SDA DIRECTION 2 Figure 19. MAX11014/MAX11015 I C Default Read Timing Begin a write or read to the MAX11014/MAX11015 by writing ...

Page 32

Automatic RF MESFET Amplifier Drain-Current Controllers Table 2. Register Listing (see Appendix: Startup Code Example for sample startup sequence) REGISTER DESCRIPTION ADC Conversion ALARM Flag Register Channel 1 DAC Input Channel 1 DAC Input and Output Channel 1 High GATE ...

Page 33

Table 3. TH1 and TH2 (Read/Write) BIT D15 D14 D13 D12 RESET STATE BIT VALUE (° Don’t care. Table 4. High/Low Temperature ALARM Threshold Examples TEMPERATURE DATA BITS D11–D0 SETTING ...

Page 34

Automatic RF MESFET Amplifier Drain-Current Controllers Table 6. IH1 and IH2 (Read/Write) BIT D15 D14 D13 D12 RESET STATE BIT VALUE Don’t care. Table 7. IL1 and IL2 (Read/Write) BIT ...

Page 35

Table 9. VL1 and VL2 (Read/Write) BIT D15 D14 D13 D12 RESET STATE BIT VALUE Don’t care. Table 10. HCFG (Read/Write) BIT NAME DATA BIT X D15–D12 CH2OCM1 D11 CH2OCM0 ...

Page 36

Automatic RF MESFET Amplifier Drain-Current Controllers Table 10a. Maximum GATE_ Voltage Modes CH_OCM1 CH_OCM0 0 0 Maximum positive voltage at GATE_ = AGND Maximum positive voltage at GATE_ = AGND + 250mV Maximum positive voltage at ...

Page 37

Set the LDAC1 bit, D5 load the new value upon completion DAC1 DAC1(CODE) into both the channel 1 DAC input and output registers. Set load the new value ...

Page 38

Automatic RF MESFET Amplifier Drain-Current Controllers Table 11. SCFG (Read/Write) BIT NAME DATA BIT X D15–D12 LDAC2 D11 T2COMP1 D10 T2COMP0 D9 KSRC2-2 D8 KSRC2-1 D7 KSRC2-0 D6 LDAC1 D5 T1COMP1 D4 T1COMP0 D3 KSRC1-2 D2 KSRC1-1 D1 KSRC1-0 D0 ...

Page 39

Table 11a. Channel 1/Channel 2 Temperature LUT Control Modes T_COMP1 T_COMP0 A change in temperature does not trigger calculation triggered in another way does not include the temperature lookup. This bit setting simplifies the V A ...

Page 40

Automatic RF MESFET Amplifier Drain-Current Controllers Table 12. ALMHCFG (Read/Write) RESET BIT NAME DATA BIT STATE X D15–D12 X INTEMP D11 0 ALMCMP D10 0 VGHYST1 D9 0 VGHYST0 D8 0 ITHYST1 D7 0 ITHYST0 D6 0 ALM2CLMP1 D5 0 ...

Page 41

Table 12a. GATE Voltage Hysteresis Levels VGHYST1 VGHYST0 LSBs of hysteresis LSBs of hysteresis LSBs of hysteresis LSBs of hysteresis. Table 12b. Sense Voltage/Temperature Hysteresis Levels ITHYST1 ITHYST0 ...

Page 42

Automatic RF MESFET Amplifier Drain-Current Controllers Table 13. ALMSCFG (Read/Write) BIT NAME DATA BIT RESET STATE X D15–D12 X VALARM2 D11 0 VWIN2 D10 0 TALARM2 D9 0 TWIN2 D8 0 IALARM2 D7 0 IWIN2 D6 0 VALARM1 D5 0 ...

Page 43

Table 14. VSET1 and VSET2 (Write) BIT NAME DATA BIT X D15–D12 VSET11–VSET0 D11–D0 Table 15. USRK1 and USRK2 (Write) BIT NAME DATA BIT X D15–D12 K11–K0 D11–D0 Set the VALARM1 bit, D5 enable ALARM func- tionality ...

Page 44

Automatic RF MESFET Amplifier Drain-Current Controllers Table 16. IPDAC1 and IPDAC2 (Write) BIT NAME DATA BIT X D15–D12 DAC11–DAC0 D11–D0 Table 17. THRUDAC1 and THRUDAC2 (Write) BIT NAME DATA BIT X D15–D12 DAC11–DAC0 D11–D0 Table 18. PGACAL (Write) BIT NAME ...

Page 45

The current-sense calibration routine offers two opera- tion modes: acquisition and tracking. In acquisition mode, the calibration routine operates continuously until the error is minimized to 50µV or less. In tracking mode, the routine operates every 15ms to minimize interference ...

Page 46

Automatic RF MESFET Amplifier Drain-Current Controllers Table 19. ADCCON (Write) BIT NAME DATA BIT X D15–D12 CONCONV D11 CH10 D10 CH9 D9 CH8 D8 CH7 D7 CH6 D6 CH5 D5 CH4 D4 CH3 D3 CH2 D2 CH1 D1 CH0 D0 ...

Page 47

Table 20. SHUT (Write) BIT NAME DATA BIT X D15–D12 FULLPD D11 FBGON D10 WDGPD D9 OSCPD D8 PD2-3 D7 PD2-2 D6 PD2-1 D5 PD2-0 D4 PD1-3 D3 PD1-2 D2 PD1-1 D1 PD1-0 D0 Table 21. LDAC (Write) BIT NAME ...

Page 48

Automatic RF MESFET Amplifier Drain-Current Controllers Table 22. SCLR (Write) BIT NAME DATA BIT X D15–D7 FULLRESET D6 ARMRESET D5 ALMSCLR D4 CACHECLR D3 FIFOCLR D2 DAC2CLR D1 DAC1CLR D0 Table 23. LUTADD (Write) BIT NAME DATA BIT LUTWORD7– D15–D8 ...

Page 49

Table 24. LUTDAT (Read/Write) BIT NAME DATA BIT RESET STATE LUTDAT15– D15–D0 LUTDAT0 Table 25. FIFO DATA BITS CHANNEL TAG D15 D14 D13 D12 ...

Page 50

Automatic RF MESFET Amplifier Drain-Current Controllers Table 26. FLAG (Read) RESET BIT NAME DATA BIT X D15–D7 RESTART D6 ALUBUSY D5 PGABUSY D4 ADCBUSY D3 VGBUSY D2 FIFOEMP D1 FIFOOVR D0 Read the oldest result in the FIFO by writing ...

Page 51

Table 27. ALMFLAG (Read) BIT NAME DATA BIT X D15–D12 HIGH-V2 D11 LOW-V2 D10 HIGH-I2 D9 LOW-I2 D8 HIGH-T2 D7 LOW-T2 D6 HIGH-V1 D5 LOW-V1 D4 HIGH-I1 D3 LOW-I1 D2 HIGH-T1 D1 LOW-T1 D0 ______________________________________________________________________________________ Automatic RF MESFET Amplifier Drain-Current ...

Page 52

Automatic RF MESFET Amplifier Drain-Current Controllers The ADCBUSY bit, D3, is set to 1 when the ADC is busy, an ALARM value is being checked, or the ADC results are being loaded into the FIFO. ADCBUSY returns to 0 after ...

Page 53

FULL-SCALE TRANSITION 111...111 REFADC 111...110 1 LSB = V / 4096 REFADC 111...101 000...011 000...010 000...001 000...000 INPUT VOLTAGE (LSB) Figure 21. ADC Transfer Function indicated by channel tag 1110 (rather than the ...

Page 54

Automatic RF MESFET Amplifier Drain-Current Controllers CNVST ADCBUSY (FLAG REGISTER BIT) ALUBUSY (FLAG REGISTER BIT) BUSY (OUTPUT) GATE1/2 OUTPUT CNVST ADCBUSY (FLAG REGISTER BIT) ALUBUSY (FLAG REGISTER BIT) BUSY OUTPUT Figure 23. BUSY Timing Write to the HVCAL_ bits in ...

Page 55

ACTUAL MEASUREMENT VALUE; THEREFORE, ALARM TRIGGERS BUILT IN 8–64 LSBs OF HYSTERESIS BUILT IN 8–64 LSBs OF HYSTERESIS Figure 24. ALARM Window Comparator Example MEASUREMENT VALUE HIGH THRESHOLD REGISTER BUILT-IN HYSTERESIS BUILT-IN HYSTERESIS LOW THRESHOLD REGISTER ALARM COMPARATOR (ACTIVE-LOW) ALARM ...

Page 56

Automatic RF MESFET Amplifier Drain-Current Controllers ACTUAL MEASUREMENT VALUE, THEREFORE ALARM TRIGGERS ALARM TRIGGERED WHEN EXCEEDING THIS LEVEL ALARM REMOVED AFTER CROSSING BACK BELOW THIS LEVEL Figure 26. ALARM Hysteresis Comparator Example The ALARM output asserts when the corresponding channel’s ...

Page 57

HIGH THRESHOLD REGISTER LOW THRESHOLD REGISTER ALARM COMPARATOR (ACTIVE-LOW) ALARM INTERRUPT (ACTIVE-LOW) READ ALARM FLAG REGISTER Figure 27. ALARM Hysteresis-Mode Timing Example ALARM threshold register value. See Figure 26 ADC output value exceeds its respective ALARM high threshold ...

Page 58

Automatic RF MESFET Amplifier Drain-Current Controllers For a GATE_ voltage ALARM condition, GATE_ remains clamped and ALM_CLMP_ 10 mode functions the same as 11 mode. This exception breaks the feedback loop that would have otherwise been created by sampling the ...

Page 59

Figure 28. LUT Memory Space ______________________________________________________________________________________ Automatic RF MESFET Amplifier Drain-Current Controllers KLUT2BASE KLUT1BASE TLUT2BASE TLUT1BASE KLUT2CNFG KLUT1CNFG TLUT2CNFG TLUT1CNFG KLUT2 VALUE 48 KLUT2 VALUE 47 KLUT2 VALUE 1 KLUT2 VALUE 0 KLUT1 VALUE 47 KLUT1 VALUE 46 KLUT1 VALUE ...

Page 60

Automatic RF MESFET Amplifier Drain-Current Controllers Table 28. LUT Addresses LUTADD7–LUTADD0 HEX 0000 0000 to 0010 1111 0011 0000 to 0101 1111 0110 0000 to 1000 1111 1001 0000 to 1011 ...

Page 61

Table 28b. LUT Configuration RESET BIT NAME DATA BIT SIZE5 D12 0 SIZE4 D11 0 SIZE3 D10 0 SIZE2 D9 0 SIZE1 D8 0 SIZE0 D7 0 HYS2 D6 0 HYS1 D5 0 HYS0 D4 0 STEP3 D3 0 STEP2 ...

Page 62

Automatic RF MESFET Amplifier Drain-Current Controllers Table 28d. LUT Base BIT NAME DATA BIT BASE11–BASE0 D11–D0 +82°C +66°C +50°C +34°C +18°C +2°C -14°C TLUT1BASE = -30°C Figure 29. TLUT Example Both the T and KLUTs contain 12-bit data. The TLUT ...

Page 63

KLUT1BASE = 0.4999V Figure 30. KLUT Example The KLUT data is stored in straight binary format. Figure 30 details a channel 1 KLUT example with nine entries, a range of 0.5V to ...

Page 64

Automatic RF MESFET Amplifier Drain-Current Controllers t CNV11 CNVST BUSY INT REFERENCE POWERS UP IN 45μs INTERNALLY* WRITE TO THE ADC CONVERSION REGISTER TO SET UP THE SCAN *ALL TIMING SPECIFICATIONS ARE TYPICAL. CLOCK MODE 11 EXAMPLE 1: COMMAND A ...

Page 65

PUINT CNVST BUSY INTERNALLY* INT REFERENCE POWERS UP IN 45μs WRITE TO THE ADC CONVERSION REGISTER TO SET UP THE SCAN *ALL TIMING SPECIFICATIONS ARE TYPICAL. CLOCK MODE TIMING EXAMPLE 2: COMMANDS A SCAN OF CHANNELS 5, 6, AND ...

Page 66

Automatic RF MESFET Amplifier Drain-Current Controllers Applications Information Layout Considerations For the external temperature sensor to perform to spec- ifications, care must be taken to place the MAX11014/ MAX11015 as close as is practical to the remote diode. Traces of ...

Page 67

THD 20 x log where V is the fundamental amplitude, and are the amplitudes of the first five harmonics. 6 Spurious-Free Dynamic Range Spurious-free dynamic range (SFDR) is ...

Page 68

Automatic RF MESFET Amplifier Drain-Current Controllers +5V μC (AT MESFET) (AT MESFET) +5V 68 ______________________________________________________________________________________ +5V SCLK/SCL DIN/SDA CS/A0 N.C./A2 DOUT/A1 ALARM BUSY +5V SPI/I2C MAX11014 OPSAFE1 OPSAFE2 CNVST DXP1 DXN1 DXP2 DXN2 -5V Typical Operating Circuit EXTERNAL REFERENCE DRAIN ...

Page 69

Startup Code Example Below is a sample startup code for the MAX11014. This code ensures clean startup of the part irrespec- tive of power supply ramp speed and starts the device REGISTER REGISTER MNEMONIC ADDRESS (hex) SHUT 0x64 SHUT 0x64 ...

Page 70

... Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 70 © 2008 Maxim Integrated Products ...

Related keywords