SAM9G10 Atmel Corporation, SAM9G10 Datasheet - Page 829

no-image

SAM9G10

Manufacturer Part Number
SAM9G10
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9G10

Flash (kbytes)
0 Kbytes
Pin Count
217
Max. Operating Frequency
266 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
1
Uart
4
Ssc
3
Sd / Emmc
1
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
No
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.08 to 1.32
Fpu
No
Mpu / Mmu
No/Yes
Timers
3
Output Compare Channels
3
Input Capture Channels
3
32khz Rtc
Yes
Calibrated Rc Oscillator
No
39.7.4
39.7.4.1
11053B–ATARM–22-Sep-11
11053B–ATARM–22-Sep-11
ISO7816 Mode
ISO7816 Mode Overview
Figure 39-27. Connection with a Remote Device for Hardware Handshaking
Setting the USART to operate with hardware handshaking is performed by writing the
USART_MODE field in the Mode Register (US_MR) to the value 0x2.
The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the DMAC channel for reception. The transmit-
ter can handle hardware handshaking in any case.
Figure 39-28
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.
Figure 39-28. Transmitter Behavior when Operating with Hardware Handshaking
The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.
Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T =
1.
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see
on page
The USART connects to a smart card as shown in
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.
808).
shows how the transmitter operates if hardware handshaking is enabled. The CTS
CTS
TXD
USART
TXD
RXD
CTS
RTS
Figure
39-29. The TXD line becomes bidirec-
RXD
TXD
RTS
CTS
Remote
Device
“Baud Rate Generator”
SAM9G35
SAM9G35
829
829

Related parts for SAM9G10