DSPIC30F5015-30I/PT Microchip Technology, DSPIC30F5015-30I/PT Datasheet - Page 91

IC DSPIC MCU/DSP 66K 64TQFP

DSPIC30F5015-30I/PT

Manufacturer Part Number
DSPIC30F5015-30I/PT
Description
IC DSPIC MCU/DSP 66K 64TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F5015-30I/PT

Program Memory Type
FLASH
Program Memory Size
66KB (22K x 24)
Package / Case
64-TFQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
52
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
52
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM330011
Minimum Operating Temperature
- 40 C
Package
64TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
16-chx10-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT64PT5 - SOCKET TRAN ICE 64MQFP/TQFPAC164319 - MODULE SKT MPLAB PM3 64TQFPAC30F008 - MODULE SKT FOR DSPIC30F 64TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F501530IPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F5015-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F5015-30I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F5015-30I/PT
0
14.4
The digital noise filter section is responsible for
rejecting noise on the incoming quadrature signals.
Schmitt Trigger inputs and a three-clock cycle delay fil-
ter combine to reject low-level noise and large, short
duration noise spikes that typically occur in noise prone
applications, such as a motor system.
The filter ensures that the filtered output signal is not
permitted to change until a stable value has been
registered for three consecutive clock cycles.
For the QEA, QEB and INDX pins, the clock divide
frequency for the digital filter is programmed by bits
QECK<2:0> (DFLTCON<6:4>) and are derived from
the base instruction cycle T
To enable the filter output for channels QEA, QEB and
INDX, the QEOUT bit must be ‘1’. The filter network for
all channels is disabled on POR and BOR.
14.5
When the QEI module is not configured for the QEI
mode, QEIM<2:0> = 001, the module can be
configured as a simple 16-bit timer/counter. The setup
and control of the auxiliary timer is accomplished
through the QEICON SFR register. This timer functions
identically to Timer1. The QEA pin is used as the timer
clock input.
When configured as a timer, the POSCNT register
serves as the Timer Count register and the MAXCNT
register serves as the Period register. When a
Timer/Period register match occurs, the QEI interrupt
flag will be asserted.
The only exception between the general purpose
timers and this timer is the added feature of external
up/down input select. When the UPDN pin is asserted
high, the timer will increment up. When the UPDN pin
is asserted low, the timer will be decremented.
The UPDN control/Status bit (QEICON<11>) can be
used to select the count direction state of the Timer
register. When UPDN = 1, the timer will count up. When
UPDN = 0, the timer will count down.
© 2008 Microchip Technology Inc.
Note:
Programmable Digital Noise
Filters
Alternate 16-bit Timer/Counter
Changing the operational mode (i.e., from
QEI to Timer or vice versa), will not affect
the Timer/Position Count register contents.
CY
.
In addition, control bit, UDSRC (QEICON<0>),
determines whether the timer count direction state is
based on the logic state written into the UPDN
control/Status bit (QEICON<11>), or the QEB pin state.
When UDSRC = 1, the timer count direction is
controlled from the QEB pin. Likewise, when
UDSRC = 0, the timer count direction is controlled by
the UPDN bit.
14.6
14.6.1
The QEI module will be halted during the CPU Sleep
mode.
14.6.2
During CPU Sleep mode, the timer will not operate,
because the internal clocks are disabled.
14.7
Since the QEI module can function as a Quadrature
Encoder Interface, or as a 16-bit timer, the following
section describes operation of the module in both
modes.
14.7.1
When the CPU is placed in the Idle mode, the QEI
module
(QEICON<13>) = 0. This bit defaults to a logic ‘0’ upon
executing POR and BOR. For halting the QEI module
during the CPU Idle mode, QEISIDL should be set to ‘1’.
Note:
dsPIC30F5015/5016
QEI Module Operation During CPU
Sleep Mode
QEI Module Operation During CPU
Idle Mode
will
This timer does not support the External
Asynchronous Counter mode of operation.
If using an external clock source, the clock
will automatically be synchronized to the
internal instruction cycle.
QEI OPERATION DURING CPU
SLEEP MODE
TIMER OPERATION DURING CPU
SLEEP MODE
QEI OPERATION DURING CPU IDLE
MODE
operate
if
the
DS70149D-page 91
QEISIDL
bit

Related parts for DSPIC30F5015-30I/PT