MC9S12E64CFUE Freescale Semiconductor, MC9S12E64CFUE Datasheet - Page 524

IC MCU 64K FLASH 25MHZ 80-QFP

MC9S12E64CFUE

Manufacturer Part Number
MC9S12E64CFUE
Description
IC MCU 64K FLASH 25MHZ 80-QFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheets

Specifications of MC9S12E64CFUE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
EBI/EMI, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
60
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 2.75 V
Data Converters
A/D 16x10b; D/A 2x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-QFP
Package
80PQFP
Family Name
HCS12
Maximum Speed
25 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
60
Interface Type
SCI/SPI
On-chip Adc
16-chx10-bit
On-chip Dac
2-chx8-bit
Number Of Timers
12
Processor Series
S12E
Core
HCS12
Data Ram Size
4 KB
Maximum Clock Frequency
25 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Minimum Operating Temperature
- 40 C
Controller Family/series
HCS12/S12X
No. Of I/o's
58
Ram Memory Size
4KB
Cpu Speed
25MHz
No. Of Timers
4
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
For Use With
M68EVB912E128 - BOARD EVAL FOR MC9S12E128/64
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12E64CFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12E64CFUE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC9S12E64CFUER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Chapter 18 Multiplexed External Bus Interface (MEBIV3)
18.3.2.6
Read: Anytime when register is in the map
Write: Anytime when register is in the map
Port E is associated with external bus control signals and interrupt inputs. These include mode select
(MODB/IPIPE1, MODA/IPIPE0), E clock, size (LSTRB/TAGLO), read/write (R/W), IRQ, and XIRQ.
When not used for one of these specific functions, port E pins 7:2 can be used as general-purpose I/O and
pins 1:0 can be used as general-purpose input. The port E assignment register (PEAR) selects the function
of each pin and DDRE determines whether each pin is an input or output when it is configured to be
general-purpose I/O. DDRE also determines the source of data for a read of PORTE.
Some of these pins have software selectable pull resistors. IRQ and XIRQ can only be pulled up whereas
the polarity of the PE7, PE4, PE3, and PE2 pull resistors are determined by chip integration. Please refer
to the device overview chapter (Signal Property Summary) to determine the polarity of these resistors.
A single control bit enables the pull devices for all of these pins when they are configured as inputs.
This register is not in the on-chip map in special peripheral mode or in expanded modes when the EME
bit is set. Therefore, these accesses will be echoed externally.
524
Pin Function
Alternate
Reset
W
R
Port E Data Register (PORTE)
NOACC
It is unwise to write PORTE and DDRE as a word access. If you are
changing port E pins from being inputs to outputs, the data may have extra
transitions during the write. It is best to initialize PORTE before enabling as
outputs.
To ensure that you read the value present on the PORTE pins, always wait
at least one cycle after writing to the DDRE register before reading from the
PORTE register.
Bit 7
0
7
= Unimplemented or Reserved
or CLKTO
or IPIPE1
MODB
6
0
6
Figure 18-10. Port E Data Register (PORTE)
or IPIPE0
MC9S12E128 Data Sheet, Rev. 1.07
MODA
5
0
5
NOTE
NOTE
ECLK
4
0
4
u = Unaffected by reset
or TAGLO
LSTRB
3
3
0
R/W
2
2
0
Freescale Semiconductor
Bit 1
IRQ
u
1
XIRQ
Bit 0
u
0

Related parts for MC9S12E64CFUE