ATMEGA32A-PU Atmel, ATMEGA32A-PU Datasheet - Page 70

MCU AVR 32K FLASH 16MHZ 40-PDIP

ATMEGA32A-PU

Manufacturer Part Number
ATMEGA32A-PU
Description
MCU AVR 32K FLASH 16MHZ 40-PDIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32A-PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Rom Size
1024 B
Height
4.83 mm
Length
52.58 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
13.97 mm
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32A-PU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATMEGA32A-PU
Manufacturer:
Atmel
Quantity:
26 792
13.1.2
8155C–AVR–02/11
MCUCSR – MCU Control and Status Register
low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt.
Table 13-1.
• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0
The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.
Table 13-2.
• Bit 6 – ISC2: Interrupt Sense Control 2
The Asynchronous External Interrupt 2 is activated by the external pin INT2 if the SREG I-bit and
the corresponding interrupt mask in GICR are set. If ISC2 is written to zero, a falling edge on
INT2 activates the interrupt. If ISC2 is written to one, a rising edge on INT2 activates the inter-
rupt. Edges on INT2 are registered asynchronously. Pulses on INT2 wider than the minimum
pulse width given in
generate an interrupt. When changing the ISC2 bit, an interrupt can occur. Therefore, it is rec-
ommended to first disable INT2 by clearing its Interrupt Enable bit in the GICR Register. Then,
Bit
Read/Write
Initial Value
ISC11
ISC01
0
0
1
1
0
0
1
1
ISC10
ISC00
Interrupt 1 Sense Control
Interrupt 0 Sense Control
0
1
0
1
0
1
0
1
R/W
JTD
7
0
Table 13-3
Description
The low level of INT1 generates an interrupt request.
Any logical change on INT1 generates an interrupt request.
The falling edge of INT1 generates an interrupt request.
The rising edge of INT1 generates an interrupt request.
Description
The low level of INT0 generates an interrupt request.
Any logical change on INT0 generates an interrupt request.
The falling edge of INT0 generates an interrupt request.
The rising edge of INT0 generates an interrupt request.
Table
ISC2
R/W
6
0
13-2. The value on the INT0 pin is sampled before detecting
will generate an interrupt. Shorter pulses are not guaranteed to
R
5
0
JTRF
R/W
4
WDRF
R/W
3
See Bit Description
BORF
R/W
2
EXTRF
R/W
1
ATmega32A
PORF
R/W
0
MCUCSR
70

Related parts for ATMEGA32A-PU