ATMEGA32A-PU Atmel, ATMEGA32A-PU Datasheet - Page 261

MCU AVR 32K FLASH 16MHZ 40-PDIP

ATMEGA32A-PU

Manufacturer Part Number
ATMEGA32A-PU
Description
MCU AVR 32K FLASH 16MHZ 40-PDIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32A-PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Rom Size
1024 B
Height
4.83 mm
Length
52.58 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
13.97 mm
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32A-PU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATMEGA32A-PU
Manufacturer:
Atmel
Quantity:
26 792
25.8.8
25.8.9
25.8.10
8155C–AVR–02/11
EEPROM Write Prevents Writing to SPMCR
Reading the Fuse and Lock Bits from Software
Preventing Flash Corruption
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCR Register.
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with $0001 and set the BLBSET and SPMEN bits in SPMCR. When an LPM instruction
is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCR, the
value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN bits
will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.
The algorithm for reading the Fuse Low bits is similar to the one described above for reading the
Lock bits. To read the Fuse Low bits, load the Z-pointer with $0000 and set the BLBSET and
SPMEN bits in SPMCR. When an LPM instruction is executed within three cycles after the BLB-
SET and SPMEN bits are set in the SPMCR, the value of the Fuse Low bits (FLB) will be loaded
in the destination register as shown below. Refer to
description and mapping of the Fuse Low bits.
Similarly, when reading the Fuse High bits, load $0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCR,
the value of the Fuse High bits (FHB) will be loaded in the destination register as shown below.
Refer to
Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.
During periods of low V
low for the CPU and the Flash to operate properly. These issues are the same as for board level
systems using the Flash, and the same design solutions should be applied.
A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.
Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):
Bit
Rd
Bit
Rd
Bit
Rd
Table 26-3 on page 267
FHB7
FLB7
7
7
7
CC,
FHB6
FLB6
the Flash program can be corrupted because the supply voltage is too
6
6
6
for detailed description and mapping of the Fuse High bits.
BLB12
FHB5
FLB5
5
5
5
BLB11
FHB4
FLB4
4
4
4
BLB02
FLB3
FHB3
3
3
3
Table 26-4 on page 268
BLB01
FLB2
FHB2
2
2
2
FLB1
FHB1
LB2
ATmega32A
1
1
1
FLB0
FHB0
LB1
0
for a detailed
0
0
261

Related parts for ATMEGA32A-PU