HCPL-3120-060E Avago Technologies US Inc., HCPL-3120-060E Datasheet - Page 21

OPTOCOUPLER 1CH 2.5A VDE 8-DIP

HCPL-3120-060E

Manufacturer Part Number
HCPL-3120-060E
Description
OPTOCOUPLER 1CH 2.5A VDE 8-DIP
Manufacturer
Avago Technologies US Inc.
Datasheet

Specifications of HCPL-3120-060E

Configuration
1 Channel
Isolation Voltage
3750 Vrms
Output Type
Open Collector
Maximum Propagation Delay Time
500 ns
Maximum Forward Diode Voltage
1.8 V
Minimum Forward Diode Voltage
1.2 V
Maximum Reverse Diode Voltage
5 V
Maximum Forward Diode Current
25 mA
Maximum Power Dissipation
295 mW
Maximum Operating Temperature
+ 100 C
Minimum Operating Temperature
- 40 C
Package / Case
PDIP-8
No. Of Channels
1
Optocoupler Output Type
Gate Drive
Input Current
16mA
Output Voltage
30V
Opto Case Style
DIP
No. Of Pins
8
Propagation Delay Low-high
0.5µs
Rohs Compliant
Yes
Common Mode Ratio
15 KV/uS
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
HCPL-3120-060E
Manufacturer:
AVAGO
Quantity:
10 000
Part Number:
HCPL-3120-060E
Manufacturer:
AVAGO/安华高
Quantity:
20 000
θ
LED Drive Circuit Considerations for Ultra High CMR Per-
formance. (Discussion applies to HCPL-3120, HCPL-J312,
and HCNW3120)
Without  a  detector  shield,  the  dominant  cause  of  op-
tocoupler  CMR  failure  is  capacitive  coupling  from  the 
input side of the optocoupler, through the package, to 
the detector IC as shown in Figure 29. The     HCPL-3120 
improves CMR perform-ance by using a detector IC with 
an optically transparent Faraday shield, which diverts the 
capacitively coupled current away from the sensitive IC 
circuitry. However, this shield does not eliminate the ca-
pacitive coupling between the LED and optocoupler pins 
5-8 as shown in Figure 30. This capacitive coupling causes 
Figure 28. Thermal model.
Figure 29. Optocoupler input to output capacitance model for unshielded
optocouplers.
21
LC
1
2
3
4
= 467 °C/W
C
C
LEDP
LEDN
HCPL-3120 fig 29
T
JE
θ
LD
= 442 °C/W
T
C
θ
CA
T
A
= 83 °C/W*
θ
T
DC
JD
= 126 °C/W
8
7
6
5
HCPL-3120 fig 28
  T
  T
  T
  q
  q
 q
  q
   *q
DC
LD
CA
JD
LC
JE
C
CA
  =  LED junction temperature 
  =  detector IC junction temperature 
  =  case temperature measured at the center of the package bottom 
  =  LED-to-case thermal resistance 
  =  LED-to-detector thermal resistance 
  =  detector-to-case thermal resistance 
  =  case-to-ambient thermal resistance 
θ
θ
θ
θ
T
T
T
LC
LD
DC
CA
CA
 will depend on the board design and the placement of the part.
JE
JD
C
= CASE TEMPERATURE MEASURED AT THE
= LED JUNCTION TEMPERATURE
= DETECTOR IC JUNCTION TEMPERATURE
= LED-TO-CASE THERMAL RESISTANCE
= LED-TO-DETECTOR THERMAL RESISTANCE
= DETECTOR-TO-CASE THERMAL RESISTANCE
= CASE-TO-AMBIENT THERMAL RESISTANCE
WILL DEPEND ON THE BOARD DESIGN AND
THE PLACEMENT OF THE PART.
CENTER OF THE PACKAGE BOTTOM
perturbations in the LED current during common mode 
transients and becomes the major source of CMR failures 
for a shielded optocoupler. The main design objective of 
a high CMR LED drive circuit becomes keeping the LED 
in  the  proper  state  (on  or  off )  during  common  mode 
transients.  For  example,  the  recommended  application 
circuit (Figure 25), can achieve 25 kV/µs CMR while mini-
mizing component complexity.
Techniques  to  keep  the  LED  in  the  proper  state  are 
discussed in the next two sections.
Figure 30. Optocoupler input to output capacitance model for shielded
optocouplers.
1
2
3
4
C
C
LEDP
LEDN
HCPL-3120 fig 30
C
SHIELD
LEDO1
C
LEDO2
8
7
6
5

Related parts for HCPL-3120-060E