EFM32WG390F128 Energy Micro, EFM32WG390F128 Datasheet

no-image

EFM32WG390F128

Manufacturer Part Number
EFM32WG390F128
Description
ARM Microcontrollers - MCU 128kb flash 32kb RAM
Manufacturer
Energy Micro
Datasheet

Specifications of EFM32WG390F128

Rohs
yes
Core
ARM Cortex M4F
Processor Series
EFM32WG390
Data Bus Width
32 bit
Maximum Clock Frequency
48 MHz
Program Memory Size
128 KB
Data Ram Size
32 KB
On-chip Adc
Yes
Operating Supply Voltage
1.85 V to 3.8 V
Operating Temperature Range
- 40 C to + 85 C
Package / Case
BGA-112
Mounting Style
SMD/SMT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EFM32WG390F128
Manufacturer:
Energy Micro
Quantity:
10 000
Part Number:
EFM32WG390F128-T
Manufacturer:
Energy Micro
Quantity:
10 000
• ARM Cortex-M4F CPU platform
• Flexible Energy Management System
• 256/128/64 KB Flash
• 32/32/32 KB RAM
• 86 General Purpose I/O pins
• 12 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS) for autonomous in-
• Hardware AES with 128/256-bit keys in 54/75 cycles
• Timers/Counters
• Backup Power Domain
• External Bus Interface for up to 4×256 MB of external memory
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4F microcontrollers for:
• Energy, gas, water and smart metering
• Health and fitness applications
• Smart accessories
• High Performance 32-bit processor @ up to 48 MHz
• DSP instruction support and floating-point unit
• Memory Protection Unit
• 20 nA @ 3 V Shutoff Mode
• 0.4µA @ 3 V Shutoff Mode with RTC
• 0.9 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out
• 1.0 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz
• 50 µA/MHz @ 3 V Sleep Mode
• 180 µA/MHz @ 3 V Run Mode, with code executed from Flash
• Configurable Push-pull, Open-drain, pull resistor, drive strength
• Configurable peripheral I/O locations
• 16 asynchronous external interrupts
• Output state retention and wakeup from Shutoff Mode
ter-peripheral signaling
• 4× 16-bit Timer/Counter
• 16-bit Low Energy Timer
• 1× 24-bit and 1× 32-bit Real-Time Counter
• 3× 16/8-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator @ 50 nA
• RTC and retention registers in a separate power domain, avail-
• Operation from backup battery when main power drains out
mapped space
• TFT Controller with Direct Drive
EFM32WG390 DATASHEET
F256/F128/F64
Preliminary
Detector, RAM and CPU retention
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU
retention
• 4×3 Compare/Capture/PWM channels
able in all energy modes
Preliminary
• Alarm and security systems
• Industrial and home automation
• www.energymicro.com/gecko
• Communication interfaces
• Ultra low power precision analog peripherals
• Low Energy Sensor Interface (LESENSE)
• Ultra efficient Power-on Reset and Brown-Out Detec-
• Debug Interface
• Pre-Programmed Serial Bootloader
• Temperature range -40 to 85 ºC
• Single power supply 1.85 to 3.8 V
• BGA112 package
...the world's most energy friendly microcontrollers
• 3× Universal Synchronous/Asynchronous Receiv-
• 2× Universal Asynchronous Receiver/Transmitter
• 2× Low Energy UART
• 2× I
• Universal Serial Bus (USB) with Host and OTG sup-
• 12-bit 1 Msamples/s Analog to Digital Converter
• 12-bit 500 ksamples/s Digital to Analog Converter
• 2× Analog Comparator
• 3× Operational Amplifier
• Supply Voltage Comparator
• Autonomous sensor monitoring in Deep Sleep Mode
• Wide range of sensors supported, including LC sen-
tor
• 2-pin Serial Wire Debug interface
• Embedded Trace Module v3.5 (ETM)
er/Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
• Autonomous operation with DMA in Deep Sleep
• Address recognition in Stop Mode
port
• Fully USB 2.0 compliant
• On-chip PHY and embedded 5V to 3.3V regulator
• 8 single ended channels/4 differential channels
• On-chip temperature sensor
• 2 single ended channels/1 differential channel
• Capacitive sensing with up to 16 inputs
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain
sors and capacitive buttons
• 1-pin Serial Wire Viewer
Mode
2
C Interface with SMBus support

Related parts for EFM32WG390F128

EFM32WG390F128 Summary of contents

Page 1

Preliminary EFM32WG390 DATASHEET F256/F128/F64 Preliminary • ARM Cortex-M4F CPU platform • High Performance 32-bit processor @ MHz • DSP instruction support and floating-point unit • Memory Protection Unit • Flexible Energy Management System • ...

Page 2

... Ordering Information Table 1.1 (p. 2) shows the available EFM32WG390 devices. Table 1.1. Ordering Information Ordering Code Flash (KB) EFM32WG390F64-BGA112 64 EFM32WG390F128-BGA112 128 EFM32WG390F256-BGA112 256 Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information. 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 Preliminary ...the world's most energy friendly microcontrollers ...

Page 3

System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M4F, with DSP instruction support and floating-point unit, innovative low energy techniques, short wake-up time ...

Page 4

Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32WG microcontroller. The flash memory is readable and writable from both the Cortex-M4F and DMA. The flash memory is divided into two blocks; ...

Page 5

The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices. 2.1.11 TFT Direct Drive The EBI contains a TFT controller which can drive a TFT via a ...

Page 6

The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.18 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse- Width ...

Page 7

Digital to Analog Converter (DAC) The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can ...

Page 8

Preliminary Table 2.1. Configuration Summary Module Cortex-M4F DBG MSC DMA RMU EMU CMU WDOG PRS USB EBI I2C0 I2C1 USART0 USART1 USART2 UART0 UART1 LEUART0 LEUART1 TIMER0 TIMER1 TIMER2 TIMER3 RTC BURTC LETIMER0 PCNT0 PCNT1 PCNT2 ACMP0 ACMP1 2012-09-11 - ...

Page 9

Module VCMP ADC0 DAC0 OPAMP AES GPIO 2.3 Memory Map The EFM32WG390 memory map is shown in Figure 2.2 ( with RAM and Flash sizes for the largest memory configuration. Figure 2.2. EFM32WG390 Memory Map with largest RAM ...

Page 10

Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on T lation and/or technology characterisation unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, ...

Page 11

Environmental Table 3.3. Environmental Symbol Parameter V ESD (Human Body Model ESDHBM HBM) V ESD (Charged Device ESDCDM Model, CDM) Latch-up sensitivity test passed level A according to JEDEC JESD 78B method Class II, 85°C. 2012-09-11 - EFM32WG390FXX - ...

Page 12

Current Consumption Table 3.4. Current Consumption Symbol Parameter EM0 current. No prescal- ing. Running prime num- I EM0 ber calculation code from Flash. I EM1 current EM1 I EM2 current EM2 I EM3 current EM3 I EM4 current EM4 ...

Page 13

Transition between Energy Modes Table 3.5. Energy Modes Transitions Symbol Parameter t Transition time from EM1 to EM0 EM10 t Transition time from EM2 to EM0 EM20 t Transition time from EM3 to EM0 EM30 t Transition time from ...

Page 14

Flash Table 3.7. Flash Symbol Parameter EC Flash erase cycles before FLASH failure RET Flash data retention FLASH t Word (32-bit) programming W_PROG time t Page erase time PERASE t Device erase time DERASE I Erase current ERASE I ...

Page 15

General Purpose Input Output Table 3.8. GPIO Symbol Parameter V Input low voltage IOIL V Input high voltage IOIH V Output high voltage IOOH V Output low voltage IOOL I Input leakage current IOLEAK R I/O pin pull-up resistor ...

Page 16

Preliminary Figure 3.1. Typical Low-Level Output Current, 2V Supply Voltage 0.20 0.15 0.10 0.05 0.00 0.0 0.5 1.0 Low-Level Out put Volt age [ V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.0 0.5 1.0 Low-Level Out put ...

Page 17

Preliminary Figure 3.2. Typical High-Level Output Current, 2V Supply Voltage 0.00 -40°C 25°C 85°C –0.05 –0.10 –0.15 –0.20 0.0 0.5 1.0 High-Level Out put Volt age [ V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0 -40°C 25°C 85°C –5 –10 –15 –20 ...

Page 18

Preliminary Figure 3.3. Typical Low-Level Output Current, 3V Supply Voltage 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.5 1.0 1.5 Low-Level Out put Volt age [ V] GPIO_Px_CTRL DRIVEMODE = LOWEST ...

Page 19

Preliminary Figure 3.4. Typical High-Level Output Current, 3V Supply Voltage 0.0 -40°C 25°C 85°C –0.1 –0.2 –0.3 –0.4 –0.5 0.0 0.5 1.0 1.5 High-Level Out put Volt age [ V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0 -40°C 25°C 85°C –10 –20 ...

Page 20

Preliminary Figure 3.5. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.5 1.0 1.5 2.0 Low-Level Out put Volt age [ V] GPIO_Px_CTRL DRIVEMODE = LOWEST ...

Page 21

Preliminary Figure 3.6. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 -40°C 25°C 85°C –0.1 –0.2 –0.3 –0.4 –0.5 –0.6 –0.7 –0.8 0.0 0.5 1.0 1.5 2.0 High-Level Out put Volt age [ V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0 -40°C ...

Page 22

Oscillators 3.9.1 LFXO Table 3.9. LFXO Symbol Parameter f Supported nominal crystal LFXO frequency ESR Supported crystal equiv- LFXO alent series resistance (ESR) C Supported crystal external LFXOL load range DC Duty cycle LFXO I Current consumption for LFXO ...

Page 23

Table 3.10. Minimum Load Capacitance (C Symbol Shunt Capacitance C 0.5 0 lfxoboost = 0 3.7 4.0 min redlfxoboost = 1 CL lfxoboost = 1 7.3 7.7 min redlfxoboost = 0 CL lfxoboost = 1 10.0 10.6 11.1 ...

Page 24

Figure 3.8. Calibrated LFRCO Frequency vs Temperature and Supply Voltage 1.8 2.2 2.6 3.0 Vdd [ V] 3.9.4 HFRCO Table 3.13. HFRCO Symbol Parameter Oscillation frequency HFRCO 3 =25°C ...

Page 25

Preliminary Figure 3.9. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage 11.15 11.10 11.05 11.00 -40°C 25°C 85°C 10.95 10.90 10.85 10.80 1.8 2.2 2.6 3.0 Vdd [ V] Figure 3.10. Calibrated HFRCO 14 MHz Band Frequency ...

Page 26

Figure 3.12. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage 28.1 28.0 27.9 27.8 27.7 27.6 27.5 27.4 1.8 2.2 2.6 3.0 Vdd [ V] 3.9.5 ULFRCO Table 3.14. ULFRCO Symbol Parameter f Oscillation frequency ULFRCO TC ...

Page 27

Preliminary Symbol Parameter I Current consumption of in- ADCREF ternal voltage reference C Input capacitance ADCIN R Input ON resistance ADCIN R Input RC filter resistance ADCFILT C Input RC filter/decoupling ADCFILT capacitance f ADC Clock Frequency ADCCLK t Conversion ...

Page 28

Preliminary Symbol Parameter Signal to Noise-puls-Distor- SNDR ADC tion Ratio (SNDR) 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers Condition Min 1 MSamples/s, 12 bit, differ- ential, 5V reference 1 MSamples/s, 12 bit, differ- ential, V reference ...

Page 29

Preliminary Symbol Parameter Spurious-Free Dynamic SFDR ADC Range (SFDR) 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers Condition Min 200 kSamples/s, 12 bit, single ended, V reference DD 200 kSamples/s, 12 bit, dif- ferential, internal 1.25V refer- ...

Page 30

Preliminary Symbol Parameter V Offset voltage ADCOFFSET Thermometer output gradi- TGRAD ADCTH ent DNL Differential non-linearity ADC (DNL) INL Integral non-linearity (INL), ADC End point method MC No missing codes ADC GAIN Gain error drift ED OFFSET Offset error drift ...

Page 31

Preliminary Figure 3.14. Differential Non-Linearity (DNL) Digit al ouput code 4095 4094 4093 4092 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers DNL )/ ...

Page 32

Typical performance Figure 3.15. ADC Frequency Spectrum, Vdd = 3V, Temp = 25° 0 –20 –40 –60 –80 –100 –120 –140 –160 –180 Frequency [ kHz] 1.25V Reference 0 –20 –40 –60 –80 –100 –120 ...

Page 33

Preliminary Figure 3.16. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25° 1.5 1.0 0.5 0.0 –0.5 –1.0 0 512 1024 1536 2048 2560 Out put code 1.25V Reference 0.8 0.6 0.4 0.2 0.0 –0.2 –0.4 –0.6 ...

Page 34

Preliminary Figure 3.17. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25° 1.0 0.5 0.0 –0.5 –1.0 0 512 1024 1536 2048 2560 Out put code 1.25V Reference 1.0 0.5 0.0 –0.5 –1.0 0 512 1024 1536 ...

Page 35

Preliminary Figure 3.18. ADC Absolute Offset, Common Mode = Vdd / –1 –2 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) Offset vs Supply Voltage, Temp = 25° Figure 3.19. ADC Dynamic ...

Page 36

Figure 3.20. ADC Temperature sensor readout 2600 2500 2400 2300 2200 2100 –40 –25 –15 – Tem perat ure [ ° C] 3.11 Digital Analog Converter (DAC) Table 3.16. DAC Symbol Parameter V Output voltage range ...

Page 37

Symbol Parameter Signal to Noise-pulse Dis- SNDR DAC tortion Ratio (SNDR) Spurious-Free Dynamic SFDR DAC Range(SFDR) V Offset voltage DACOFFSET DNL Differential non-linearity DAC INL Integral non-linearity DAC MC No missing codes DAC 3.12 Operational Amplifier (OPAMP) The electrical characteristics ...

Page 38

Preliminary Symbol Parameter G Open Loop Gain OL GBW Gain Bandwidth Product OPAMP PM Phase Margin OPAMP R Input Resistance INPUT R Load Resistance LOAD I DC Load Current LOAD_DC V Input Voltage INPUT V Output Voltage OUTPUT V Input ...

Page 39

Preliminary Symbol Parameter Figure 3.21. OPAMP Common Mode Rejection Ratio Figure 3.22. OPAMP Positive Power Supply Rejection Ratio 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers Condition Min V =1V, RESSEL=0, out 0.1 Hz<f<1 MHz, OPAx- HCMDIS=0 ...

Page 40

Preliminary Figure 3.23. OPAMP Negative Power Supply Rejection Ratio Figure 3.24. OPAMP Voltage Noise Spectral Density (Unity Gain) V Figure 3.25. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers =1V ...

Page 41

Analog Comparator (ACMP) Table 3.18. ACMP Symbol Parameter V Input voltage range ACMPIN V ACMP Common Mode volt- ACMPCM age range I Active current ACMP Current consumption of in- I ACMPREF ternal voltage reference V Offset voltage ACMPOFFSET V ...

Page 42

Preliminary Figure 3.26. Typical ACMP Characteristics 2.5 2.0 1.5 1.0 0.5 0 ACMP_CTRL_BIASPROG Current consumption 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12 ACMP_CTRL_HYSTSEL Hysteresis 2012-09-11 - ...

Page 43

Voltage Comparator (VCMP) Table 3.19. VCMP Symbol Parameter V Input voltage range VCMPIN V VCMP Common Mode volt- VCMPCM age range I Active current VCMP t Startup time reference gen- VCMPREF erator V Offset voltage VCMPOFFSET V VCMP hysteresis ...

Page 44

Preliminary Symbol Parameter I GPIO current GPIO I EBI current EBI I PRS current PRS I DMA current DMA 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers Condition Min GPIO idle current, clock en- abled EBI idle ...

Page 45

Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32WG390. 4.1 Pinout The EFM32WG390 pinout is shown in Figure 4.1 (p. 45) and ...

Page 46

Preliminary BGA112 Pin# and Name Pin Name Analog A4 PE9 A5 PD10 A6 PF7 A7 PF5 A8 PF12 A9 PE4 A10 PF10 A11 PF11 B1 PA15 B2 PE13 B3 PE11 B4 PE8 B5 PD11 B6 PF8 B7 PF6 B8 USB_VBUS ...

Page 47

Preliminary BGA112 Pin# and Name Pin Name Analog D4 VSS Ground D5 IOVDD_6 Digital IO power supply 6. D6 PD9 D7 IOVDD_5 Digital IO power supply 5. D8 PF1 D9 PE7 D10 PC8 ACMP1_CH0 D11 PC9 ACMP1_CH1 E1 PA6 E2 ...

Page 48

Preliminary BGA112 Pin# and Name Pin Name Analog ACMP0_CH0 DAC0_OUT0ALT #2/ H2 PC2 OPAMP_OUT0ALT ACMP0_CH2 H3 PD14 H4 PA7 H5 PA8 H6 VSS Ground H7 IOVDD_3 Digital IO power supply 3. H8 PD8 BU_VIN ADC0_CH5 H9 PD5 DAC0_OUT2 #0/ OPAMP_OUT2 ...

Page 49

BGA112 Pin# and Name Pin Name Analog K7 AVSS_1 Analog ground 1. K8 AVDD_2 Analog power supply 2. K9 AVDD_1 Analog power supply 1. K10 AVSS_0 Analog ground 0. ADC0_CH1 K11 PD1 DAC0_OUT1ALT #4/ OPAMP_OUT1ALT L1 PB8 LFXTAL_N DAC0_N0 #0/ ...

Page 50

Preliminary Alternate Functionality 0 1 ACMP0_CH4 PC4 ACMP0_CH5 PC5 ACMP0_CH6 PC6 ACMP0_CH7 PC7 ACMP0_O PE13 PE2 ACMP1_CH0 PC8 ACMP1_CH1 PC9 ACMP1_CH2 PC10 ACMP1_CH3 PC11 ACMP1_O PF2 PE3 ADC0_CH0 PD0 ADC0_CH1 PD1 ADC0_CH2 PD2 ADC0_CH3 PD3 ADC0_CH4 PD4 ADC0_CH5 PD5 ADC0_CH6 ...

Page 51

Preliminary Alternate Functionality 0 1 OPAMP_P2 DBG_SWCLK PF0 PF0 DBG_SWDIO PF1 PF1 DBG_SWO PF2 EBI_A00 PA12 PA12 EBI_A01 PA13 PA13 EBI_A02 PA14 PA14 EBI_A03 PB9 PB9 EBI_A04 PB10 PB10 EBI_A05 PC6 PC6 EBI_A06 PC7 PC7 EBI_A07 PE0 PE0 EBI_A08 PE1 ...

Page 52

Preliminary Alternate Functionality 0 1 EBI_AD03 PE11 PE11 EBI_AD04 PE12 PE12 EBI_AD05 PE13 PE13 EBI_AD06 PE14 PE14 EBI_AD07 PE15 PE15 EBI_AD08 PA15 PA15 EBI_AD09 PA0 PA0 EBI_AD10 PA1 PA1 EBI_AD11 PA2 PA2 EBI_AD12 PA3 PA3 EBI_AD13 PA4 PA4 EBI_AD14 PA5 ...

Page 53

Preliminary Alternate Functionality 0 1 ETM_TD2 PD4 PB15 ETM_TD3 PD5 GPIO_EM4WU0 PA0 GPIO_EM4WU1 PA6 GPIO_EM4WU2 PC9 GPIO_EM4WU3 PF1 GPIO_EM4WU4 PF2 GPIO_EM4WU5 PE13 HFXTAL_N PB14 HFXTAL_P PB13 I2C0_SCL PA1 PD7 I2C0_SDA PA0 PD6 I2C1_SCL PC5 PB12 I2C1_SDA PC4 PB11 LES_ALTEX0 PD6 ...

Page 54

Preliminary Alternate Functionality 0 1 LFXTAL_N PB8 LFXTAL_P PB7 PCNT0_S0IN PE0 PCNT0_S1IN PE1 PCNT1_S0IN PC4 PB3 PCNT1_S1IN PC5 PB4 PCNT2_S0IN PD0 PE8 PCNT2_S1IN PD1 PE9 PRS_CH0 PA0 PRS_CH1 PA1 PRS_CH2 PC0 PF5 PRS_CH3 PC1 PE8 TIM0_CC0 PA0 PA0 TIM0_CC1 PA1 ...

Page 55

Alternate Functionality 0 1 US1_RX PC1 PD1 US1_TX PC0 PD0 US2_CLK PC4 PB5 US2_CS PC5 PB6 US2_RX PC3 PB4 US2_TX PC2 PB3 USB_DM PF10 USB_DMPU PD2 USB_DP PF11 USB_ID PF12 USB_VBUS USB_VBUS USB_VBUSEN PF5 USB_VREGI USB_VREGI USB_VREGO USV_VREGO 4.3 GPIO ...

Page 56

Figure 4.2. Opamp Pinout PC4 PC5 PD4 PD3 PD6 PD7 4.5 BGA112 Package Figure 4.3. BGA112 Note: 1. The dimensions in parenthesis are reference. 2. Datum 'C' and seating plane are defined by the crown of the solder balls. 3. ...

Page 57

Preliminary The BGA112 Package uses SAC105 solderballs. All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers www.energymicro.com 57 ...

Page 58

PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. BGA112 PCB Land Pattern a b Table 5.1. BGA112 PCB Land Pattern Dimensions (Dimensions in mm) Symbol 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 Preliminary ...the world's ...

Page 59

Preliminary Figure 5.2. BGA112 PCB Solder Mask a b Table 5.2. BGA112 PCB Solder Mask Dimensions (Dimensions in mm) Symbol 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers e d Dim. (mm) 0.48 ...

Page 60

Figure 5.3. BGA112 PCB Stencil Design a b Table 5.3. BGA112 PCB Stencil Design Dimensions (Dimensions in mm) Symbol The drawings are not to scale. 2. All dimensions are in millimeters. 3. All drawings are ...

Page 61

Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure ...

Page 62

Revision History 7.1 Revision 1.00 September 11th, 2012 Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Other minor corrections. 7.2 Revision 0.95 May 3rd, 2012 ...

Page 63

... Micro reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Energy Micro shall have no liability for the consequences of use of the infor- mation supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Energy Micro. A " ...

Page 64

... B Contact Information B.1 Energy Micro Corporate Headquarters Postal Address Energy Micro AS P.O. Box 4633 Nydalen N-0405 Oslo NORWAY www.energymicro.com Phone: + Fax B.2 Global Contacts Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information. Americas www.energymicro.com/americas www.energymicro.com/emea 2012-09-11 - EFM32WG390FXX - d0193_Rev1 ...

Page 65

... Chip Marking, Revision and Errata ............................................................................................................ 61 6.1. Chip Marking ................................................................................................................................ 61 6.2. Revision ...................................................................................................................................... 61 6.3. Errata ......................................................................................................................................... 61 7. Revision History ...................................................................................................................................... 62 7.1. Revision 1.00 ............................................................................................................................... 62 7.2. Revision 0.95 ............................................................................................................................... 62 7.3. Revision 0.90 ............................................................................................................................... 62 A. Disclaimer and Trademarks ....................................................................................................................... 63 A.1. Disclaimer ................................................................................................................................... 63 A.2. Trademark Information ................................................................................................................... 63 B. Contact Information ................................................................................................................................. 64 B.1. Energy Micro Corporate Headquarters .............................................................................................. 64 B.2. Global Contacts ............................................................................................................................ 64 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers www.energymicro.com 65 ...

Page 66

Preliminary List of Figures 2.1. Block Diagram ....................................................................................................................................... 3 2.2. EFM32WG390 Memory Map with largest RAM and Flash sizes ....................................................................... 9 3.1. Typical Low-Level Output Current, 2V Supply Voltage .................................................................................. 16 3.2. Typical High-Level Output Current, 2V Supply Voltage ................................................................................. ...

Page 67

Preliminary List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 8 3.1. Absolute Maximum Ratings ..................................................................................................................... 10 3.2. General Operating Conditions .................................................................................................................. 10 3.3. Environmental ....................................................................................................................................... 11 3.4. Current Consumption ............................................................................................................................. 12 3.5. Energy Modes Transitions ...................................................................................................................... ...

Page 68

Preliminary List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 41 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 43 2012-09-11 - EFM32WG390FXX - d0193_Rev1.00 ...the world's most energy friendly microcontrollers www.energymicro.com 68 ...

Page 69

...

Related keywords