M38062M3-156FP MITSUBISHI [Mitsubishi Electric Semiconductor], M38062M3-156FP Datasheet

no-image

M38062M3-156FP

Manufacturer Part Number
M38062M3-156FP
Description
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Manufacturer
MITSUBISHI [Mitsubishi Electric Semiconductor]
DESCRIPTION
The 3806 group is 8-bit microcomputer based on the 740 family
core technology.
The 3806 group is designed for controlling systems that require
analog signal processing and include two serial I/O functions, A-D
converters, and D-A converters.
The various microcomputers in the 3806 group include variations
of internal memory size and packaging. For details, refer to the
section on part numbering.
For details on availability of microcomputers in the 3806 group, re-
fer to the section on group expansion.
FEATURES
Basic machine-language instructions ....................................... 71
Memory size
ROM ................................................................ 12 K to 48 K bytes
RAM ................................................................. 384 to 1024 bytes
Programmable input/output ports ............................................. 72
Interrupts .................................................. 16 sources, 16 vectors
Timers ............................................................................. 8 bit
Serial I/O1 .................... 8-bit
Serial I/O2 .................................... 8-bit
A-D converter .................................................. 8-bit
D-A converter .................................................. 8-bit
PIN CONFIGURATION (TOP VIEW)
P6
P6
P6
3
5
4
V
/AN
/AN
/AN
P8
P8
P8
P8
P8
P8
P8
P8
V
REF
CC
7
6
5
4
3
2
1
0
5
4
3
1 (UART or Clock-synchronized)
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
1 (Clock-synchronized)
80-pin plastic-molded QFP
Package type : 80P6N-A
M38063M6-XXXFP
8 channels
2 channels
4
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
APPLICATIONS
Office automation, VCRs, tuners, musical instruments, cameras,
air conditioners, etc.
Minimum instruction
execution time
Oscillation frequency
Power source voltage
Power dissipation
Operating temperature
range
Clock generating circuit ....................... Internal feedback resistor
(connect to external ceramic resonator or quartz-crystal)
Memory expansion possible
Specification
(MHz)
(mW)
(unit)
MITSUBISHI MICROCOMPUTERS
( C)
( s)
(V)
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
3.0 to 5.5
–20 to 85
Standard
3806 Group
0.5
32
8
P2
P2
P2
P2
P2
P2
P2
P2
V
X
X
P4
P4
RESET
CNV
P4
SS
OUT
IN
0
1
2
3
4
5
6
7
0
1
2
/DB
/DB
/DB
/DB
/DB
/DB
/DB
/DB
/INT
SS
0
1
2
3
4
5
6
7
0
temperature version
Extended operating
4.0 to 5.5
–40 to 85
0.5
32
8
High-speed
2.7 to 5.5
–20 to 85
version
0.4
10
40

Related parts for M38062M3-156FP

M38062M3-156FP Summary of contents

Page 1

DESCRIPTION The 3806 group is 8-bit microcomputer based on the 740 family core technology. The 3806 group is designed for controlling systems that require analog signal processing and include two serial I/O functions, A-D converters, and D-A converters. The various ...

Page 2

PIN CONFIGURATION (TOP VIEW REF / / /AN ...

Page 3

MITSUBISHI MICROCOMPUTERS 3806 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 3 ...

Page 4

PIN DESCRIPTION Pin Name V Power source • Apply voltage (Extended operating temperature version : 4 5 (High-speed version : 2 5 CNV ...

Page 5

PIN DESCRIPTION (Continued) Pin Name I/O port P7 • 8-bit I/O port with the same function as port P0 0 IN2 • CMOS compatible input level 1 OUT2 • N-channel open-drain ...

Page 6

... SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (2) Packages 80P6N-A ............................. 0.8 mm-pitch plastic molded QFP 80P6S-A ........................... 0.65 mm-pitch plastic molded QFP 80D0 ................ 0.8 mm-pitch ceramic LCC (EPROM version) Mass product M38063M6/E6 Mass product M38062M4 Mass product M38062M3 192 256 384 512 640 RAM size (bytes) RAM size (bytes) Package 80P6N-A 384 ...

Page 7

... M38067MCDXXXFP M38067ECDXXXFP 49152(49022) M38067ECDFP SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (2) Packages 80P6N-A ............................. 0.8 mm-pitch plastic molded QFP Mass product M38063M6D Mass product M38062M4D Mass product M38062M3D 192 256 384 512 640 RAM size (bytes) RAM size (bytes) Package ) 384 Mask ROM version 384 Mask ROM version ...

Page 8

GROUP EXPANSION (HIGH-SPEED VERSION) Mitsubishi plans to expand the 3806 group (high-speed version) as follows: (1) Support for mask ROM, One Time PROM, and EPROM versions ROM/PROM capacity ................................ bytes RAM capacity .............................................. 512 to ...

Page 9

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU) The 3806 group uses the standard 740 family instruction set. Re- fer to the table of 740 family addressing modes and machine in- structions or the SERIES 740 <Software> User’s Manual for de- tails ...

Page 10

Memory Special function register (SFR) area The Special Function Register area in the zero page contains con- trol registers such as I/O ports and timers. RAM RAM is used for data storage and for stack area of subroutine calls and ...

Page 11

Port P0 (P0) 0000 16 Port P0 direction register (P0D) 0001 16 Port P1 (P1) 0002 16 Port P1 direction register (P1D) 0003 16 Port P2 (P2) 0004 16 Port P2 direction register (P2D) 0005 16 Port P3 (P3) 0006 ...

Page 12

I/O Ports Direction registers The 3806 group has 72 programmable I/O pins arranged in nine I/O ports (ports P0 to P8). The I/O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a ...

Page 13

Ports P0, P1, P2, P3 Direction register Port latch Data bus (3) Port P4 4 Serial I/O1 enable bit Receive enable bit Direction register Port latch Data bus Serial I/O1 input (5) Port P4 ...

Page 14

Port P6 Direction register Data bus Port latch A-D conversion input Analog input pin selection bit (11) Port P7 1 Serial I/O2 transmit completion signal Serial I/O2 port selection bit Direction register Port latch Data bus Serial I/O2 output ...

Page 15

INTERRUPTS Interrupts occur by sixteen sources: seven external, eight internal, and one software. Interrupt control Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software in- terrupt set ...

Page 16

Interrupt request bit Interrupt enable bit Interrupt disable flag (I) Fig. 6 Interrupt control b7 b0 Interrupt edge selection register (INTEDGE : address 003A INT active edge selection bit 0 INT active edge selection bit 1 Not used (returns “0” ...

Page 17

Timers The 3806 group has four timers: timer X, timer Y, timer 1, and timer 2. All timers are count down. When the timer reaches “00 derflow occurs at the next count pulse and the corresponding timer latch is reloaded ...

Page 18

Oscillator Divider f(X ) 1/16 IN Pulse width measurement mode CNTR active 0 P5 /CNTR pin 4 0 Event edge switch bit counter mode “0” “1” CNTR active 0 edge switch bit Port P5 4 Port P5 4 latch direction ...

Page 19

Serial I/O1 Serial I/O1 can be used as either clock synchronous or asynchro- nous (UART) serial I/O. A dedicated timer is also provided for baud rate generation CLK1 BRG count source selection ...

Page 20

Asynchronous serial I/O (UART) mode Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode selection bit of the serial I/O control register to “0”. Eight serial data transfer formats can be selected, and the ...

Page 21

Transmit or receive clock Transmit buffer write signal TBE=0 TSC=0 TBE=1 Serial output Receive buffer read signal ST Serial input Error flag detection occurs at the same time that the RBF flag ...

Page 22

Serial I/O1 status register (SIO1STS : address 0019 16 Transmit buffer empty flag (TBE) 0: Buffer full 1: Buffer empty Receive buffer full flag (RBF) 0: Buffer empty 1: Buffer full Transmit shift completion flag (TSC) 0: Transmit ...

Page 23

Serial I/O2 The serial I/O2 function can be used only for clock synchronous serial I/O. For clock synchronous serial I/O the transmitter and the receiver must use the same clock. If the internal clock is used, transfer is started by ...

Page 24

Transfer clock (Note 1) Serial I/O2 register write signal Serial I/O2 output S OUT2 Serial I/O2 input S IN2 Receive enable signal S RDY2 Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can ...

Page 25

A-D Converter The functional blocks of the A-D converter are described below. [A-D conversion register] The A-D conversion register is a read-only register that stores the result of an A-D conversion. When reading this register during an A-D conversion, the ...

Page 26

D-A Converter The 3806 group has two internal D-A converters (DA1 and DA2) with 8-bit resolutions. The D-A converter is performed by setting the value in the D-A conversion register. The result of D-A converter is output from the DA ...

Page 27

Reset Circuit ______ To reset the microcomputer, the RESET pin should be held at an ______ “L” level for more. Then the RESET pin is returned to an “H” level (Note 1), reset is released. Internal operation ...

Page 28

X IN RESET RESET OUT (internal reset) SYNC Address Data clock cycles IN Fig. 24 Timing of reset 28 SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ? ? ? ? ? ? FFFC ? ? ? ? ? ...

Page 29

Clock Generating Circuit An oscillation circuit can be formed by connecting a resonator be- tween X and supply a clock signal externally, input OUT the X pin and make the X pin open. IN ...

Page 30

Processor Modes Single-chip mode, memory expansion mode, and microprocessor mode can be selected by changing the contents of the processor mode bits CM and CM (bits 0 and 1 of address 003B 0 1 memory expansion mode and microprocessor mode, ...

Page 31

Bus control with memory expansion _____ The 3806 group has a built-in ONW function to facilitate access to external memory and I/O devices in memory expansion mode or microprocessor mode. _____ If an “L” level signal is input to the ...

Page 32

NOTES ON PROGRAMMING Processor Status Register The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is “1”. Af- ter a reset, initialize flags which affect program execution. In ...

Page 33

DATA REQUIRED FOR MASK ORDERS The following are necessary when ordering a mask ROM produc- tion: 1. Mask ROM Order Confirmation Form 2. Mark Specification Form 3. Data to be written to ROM, in EPROM form (three identical copies) MITSUBISHI ...

Page 34

ABSOLUTE MAXIMUM RATINGS Parameter Symbol V Power source voltage CC Input voltage P0 – – – REF ______ V Input voltage RESET, X ...

Page 35

ELECTRICAL CHARACTERISTICS Symbol Parameter “H” output voltage P0 – – –P6 0 “L” output voltage P0 – – – – V Hysteresis CNTR T+ T– 0 ...

Page 36

D-A CONVERTER CHARACTERISTICS (V CC Symbol Parameter — Resolution V — Absolute accuracy V t Setting time su R Output resistor O I Reference power source input current (Note) VREF Note: Using one D-A converter, with the value in the ...

Page 37

TIMING REQUIREMENTS 1 (V Symbol _____ t Reset input “L” pulse width w(RESET) t External clock input cycle time c External clock input “H” pulse width wH External clock input “L” pulse width wL(X ...

Page 38

SWITCHING CHARACTERISTICS 1 Symbol Parameter t Serial I/O1 clock output “H” pulse width wH(S ) CLK1 t Serial I/O1 clock output “L” pulse width wL(S ) CLK1 t Serial I/O1 output delay time (Note 1) d(S –T D) CLK1 X ...

Page 39

TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE Symbol _____ ____ t Before ONW input set up time su(ONW– ) _____ ____ t After ONW input hold time h( –ONW) t Before data bus set up time su(DB– ...

Page 40

TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE Symbol _____ ____ t Before ONW input set up time su(ONW– ) _____ ____ t After ONW input hold time h( –ONW) t Before data bus set up time su(DB– ...

Page 41

ABSOLUTE MAXIMUM RATINGS (Extended operating temperature version) Symbol V Power source voltage CC Input voltage Input voltage I V Input voltage I Output voltage Power dissipation d T Operating temperature opr T Storage ...

Page 42

ELECTRICAL CHARACTERISTICS Symbol Parameter “H” output voltage P0 – – –P6 0 “L” output voltage P0 – – – – V Hysteresis CNTR , CNTR T+ ...

Page 43

D-A CONVERTER CHARACTERISTICS (Extended operating temperature version) (V Symbol Parameter — Resolution — Absolute accuracy t Setting time su R Output resistor O I Reference power source input current (Note) VREF Note: Using one D-A converter, with the value in ...

Page 44

TIMING REQUIREMENTS (Extended operating temperature version) Symbol _____ t Reset input “L” pulse width w(RESET) t External clock input cycle time c External clock input “H” pulse width wH External clock input “L” pulse ...

Page 45

TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (Extended operating temperature version) Symbol _____ ____ t Before ONW input set up time su(ONW– ) _____ ____ t After ONW input hold time h( –ONW) t Before data bus set ...

Page 46

ABSOLUTE MAXIMUM RATINGS (High-speed version) Symbol Parameter V Power source voltage CC Input voltage P0 – – – REF IN ______ ...

Page 47

ELECTRICAL CHARACTERISTICS (High-speed version) Symbol Parameter “H” output voltage P0 – – –P6 0 “L” output voltage P0 – – – – V Hysteresis CNTR , ...

Page 48

D-A CONVERTER CHARACTERISTICS (High-speed version) (V Symbol Parameter — Resolution V — Absolute accuracy V t Setting time su R Output resistor O I Reference power source input current (Note) VREF Note: Using one D-A converter, with the value in ...

Page 49

TIMING REQUIREMENTS 1 (High-speed version) Symbol _____ t Reset input “L” pulse width w(RESET) t External clock input cycle time c External clock input “H” pulse width wH External clock input “L” pulse width ...

Page 50

SWITCHING CHARACTERISTICS 1 (High-speed version) Symbol Parameter t Serial I/O1 clock output “H” pulse width wH(S ) CLK1 t Serial I/O1 clock output “L” pulse width wL(S ) CLK1 t Serial I/O1 output delay time (Note 1) d(S –T D) ...

Page 51

TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (High-speed version) Symbol _____ ____ t Before ONW input set up time su(ONW– ) _____ ____ t After ONW input hold time h( –ONW) t Before data bus set up ...

Page 52

TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (High-speed version) Symbol _____ ____ t Before ONW input set up time su(ONW– ) _____ ____ t After ONW input hold time h( –ONW) t Before data bus set up ...

Page 53

TIMING DIAGLAM (1) Timing Diagram CNTR , CNTR 0 1 INT INT 0– 4 RESET CLK1 S CLK2 IN2 OUT2 SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER t C(CNTR) t WH(CNTR) 0.8 ...

Page 54

Diagram in Memory Expansion Mode and Microprocessor Mode (a) AD – – SYNC RD,WR ONW DB – (At CPU reading) DB – (At CPU writing) (3)Timing Diagram in Microprocessor Mode ...

Page 55

Timing Diagram in Memory Expansion Mode and Microprocessor Mode (b) RD,WR AD – – ONW (At CPU reading – (At CPU writing – MITSUBISHI MICROCOMPUTERS SINGLE-CHIP ...

Page 56

Keep safety first in your circuit designs! • Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead ...

Page 57

REVISION DESCRIPTION LIST Rev. No. 1.0 First Edition 3806GROUP DATA SHEET Revision Description (1/1) Rev. date 971128 ...

Related keywords