lp3856et-2.5 National Semiconductor Corporation, lp3856et-2.5 Datasheet - Page 12

no-image

lp3856et-2.5

Manufacturer Part Number
lp3856et-2.5
Description
3a Fast Response Ultra Low Dropout Linear Regulators
Manufacturer
National Semiconductor Corporation
Datasheet
www.national.com
Application Hints
than 10 mΩ). However, some dielectric types do not have
good capacitance characteristics as a function of voltage
and temperature.
Z5U and Y5V dielectric ceramics have capacitance that
drops severely with applied voltage. A typical Z5U or Y5V
capacitor can lose 60% of its rated capacitance with half of
the rated voltage applied to it. The Z5U and Y5V also exhibit
a severe temperature effect, losing more than 50% of nomi-
nal capacitance at high and low limits of the temperature
range.
X7R and X5R dielectric ceramic capacitors are strongly rec-
ommended if ceramics are used, as they typically maintain a
capacitance range within
ing ratings of temperature and voltage. Of course, they are
typically larger and more costly than Z5U/Y5U types for a
given voltage and capacitance.
TANTALUM: Solid Tantalum capacitors are typically recom-
mended for use on the output because their ESR is very
close to the ideal value required for loop compensation.
Tantalums also have good temperature stability: a good
quality Tantalum will typically show a capacitance value that
varies less than 10-15% across the full temperature range of
125˚C to −40˚C. ESR will vary only about 2X going from the
high to low temperature limits.
The increasing ESR at lower temperatures can cause oscil-
lations when marginal quality capacitors are used (if the ESR
of the capacitor is near the upper limit of the stability range at
room temperature).
ALUMINUM: This capacitor type offers the most capaci-
tance for the money. The disadvantages are that they are
larger in physical size, not widely available in surface mount,
and have poor AC performance (especially at higher fre-
quencies) due to higher ESR and ESL.
Compared by size, the ESR of an aluminum electrolytic is
higher than either Tantalum or ceramic, and it also varies
greatly with temperature. A typical aluminum electrolytic can
exhibit an ESR increase of as much as 50X when going from
25˚C down to −40˚C.
It should also be noted that many aluminum electrolytics only
specify impedance at a frequency of 120 Hz, which indicates
they have poor high frequency performance. Only aluminum
electrolytics that have an impedance specified at a higher
frequency (between 20 kHz and 100 kHz) should be used for
the LP385X. Derating must be applied to the manufacturer’s
ESR specification, since it is typically only valid at room
temperature.
Any applications using aluminum electrolytics should be
thoroughly tested at the lowest ambient operating tempera-
ture where ESR is maximum.
TURN-ON CHARACTERISTICS FOR OUTPUT
VOLTAGES PROGRAMMED TO 2.0V OR BELOW
As Vin increases during start-up, the regulator output will
track the input until Vin reaches the minimum operating
voltage (typically about 2.2V). For output voltages pro-
grammed to 2.0V or below, the regulator output may mo-
mentarily exceed its programmed output voltage during start
up. Outputs programmed to voltages above 2.0V are not
affected by this behavior.
±
20% of nominal over full operat-
(Continued)
12
PCB LAYOUT
Good PC layout practices must be used or instability can be
induced because of ground loops and voltage drops. The
input and output capacitors must be directly connected to the
input, output, and ground pins of the regulator using traces
which do not have other currents flowing in them (Kelvin
connect).
The best way to do this is to lay out C
device with short traces to the V
The regulator ground pin should be connected to the exter-
nal circuit ground so that the regulator and its capacitors
have a "single point ground".
It should be noted that stability problems have been seen in
applications where "vias" to an internal ground plane were
used at the ground points of the IC and the input and output
capacitors. This was caused by varying ground potentials at
these nodes resulting from current flowing through the
ground plane. Using a single point ground technique for the
regulator and it’s capacitors fixed the problem.
Since high current flows through the traces going into V
and coming from V
these pins so there is no voltage drop in series with the input
and output capacitors.
RFI/EMI SUSCEPTIBILITY
RFI (radio frequency interference) and EMI (electromagnetic
interference) can degrade any integrated circuit’s perfor-
mance because of the small dimensions of the geometries
inside the device. In applications where circuit sources are
present which generate signals with significant high fre-
quency energy content (
ensure that this does not affect the IC regulator.
If RFI/EMI noise is present on the input side of the regulator
(such as applications where the input source comes from the
output of a switching regulator), good ceramic bypass ca-
pacitors must be used at the input pin of the IC.
If a load is connected to the IC output which switches at high
speed (such as a clock), the high-frequency current pulses
required by the load must be supplied by the capacitors on
the IC output. Since the bandwidth of the regulator loop is
less than 100 kHz, the control circuitry cannot respond to
load changes above that frequency. This means the effective
output impedance of the IC at frequencies above 100 kHz is
determined only by the output capacitor(s).
In applications where the load is switching at high speed, the
output of the IC may need RF isolation from the load. It is
recommended that some inductance be placed between the
output capacitor and the load, and good RF bypass capaci-
tors be placed directly across the load.
PCB layout is also critical in high noise environments, since
RFI/EMI is easily radiated directly into PC traces. Noisy
circuitry should be isolated from "clean" circuits where pos-
sible, and grounded through a separate path. At MHz fre-
quencies, ground planes begin to look inductive and RFI/
EMI can cause ground bounce across the ground plane.
In multi-layer PCB applications, care should be taken in
layout so that noisy power and ground planes do not radiate
directly into adjacent layers which carry analog power and
ground.
OUTPUT NOISE
Noise is specified in two ways-
Spot Noise or Output noise density is the RMS sum of all
noise sources, measured at the regulator output, at a spe-
OUT
, Kelvin connect the capacitor leads to
>
1 MHz), care must be taken to
IN
, V
OUT
IN
and C
, and ground pins.
OUT
near the
IN

Related parts for lp3856et-2.5