LT1374C Linear Technology, LT1374C Datasheet - Page 15

no-image

LT1374C

Manufacturer Part Number
LT1374C
Description
4.5A/ 500kHz Step-Down Switching Regulator
Manufacturer
Linear Technology
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LT1374CFE
Quantity:
2 121
Part Number:
LT1374CFE
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LT1374CFE/IF
Manufacturer:
LT
Quantity:
84
Part Number:
LT1374CR
Manufacturer:
SHARP
Quantity:
46
Part Number:
LT1374CR
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LT1374CR#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Company:
Part Number:
LT1374CR#TRPBF
Quantity:
750
Part Number:
LT1374CR-5
Manufacturer:
Linear Technology
Quantity:
135
Part Number:
LT1374CR-5
Manufacturer:
DSP
Quantity:
2 000
Part Number:
LT1374CR-5#PBF
Manufacturer:
LT
Quantity:
1 900
Part Number:
LT1374CR-5#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LT1374CR-SYNC#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
APPLICATIONS
prevents the regulator from operating at source voltages
where these problems might occur.
Threshold voltage for lockout is about 2.38V, slightly less
than the internal 2.42V reference voltage. A 3.5 A bias
current flows out of the pin at threshold. This internally
generated current is used to force a default high state on
the shutdown pin if the pin is left open. When low shut-
down current is not an issue, the error due to this current
can be minimized by making R
current is an issue, R
due to initial bias current and changes with temperature
should be considered.
V
Keep the connections from the resistors to the shutdown
pin short and make sure that interplane or surface capaci-
tance to the switching nodes are minimized. If high resis-
tor values are used, the shutdown pin should be bypassed
with a 1000pF capacitor to prevent coupling problems
from the switch node. If hysteresis is desired in the
undervoltage lockout point, a resistor R
the output node. Resistor values can be calculated from:
25k suggested for R
V
IN
IN
V = Hysteresis in input voltage level
R
R
R
R
= Minimum input voltage
= Input voltage at which switching stops as input
HI
FB
LO
HI
voltage descends to trip level
R
2 38
R
10
LO IN
HI
R
k
LO
V
to 100k 25k suggested
V R
V
V
OUT
IN
2 38
2 38
U
LO
LO
LO
2 38
can be raised to 100k, but the error
3 5
V
INFORMATION
R
U
V
V V
2 3 5
A
LO
OUT
10k or less. If shutdown
A
W
1
FB
can be added to
V
U
Example: output voltage is 5V, switching is to stop if input
voltage drops below 12V and should not restart unless
input rises back to 13.5V. V is therefore 1.5V and
V
SWITCH NODE CONSIDERATIONS
For maximum efficiency, switch rise and fall times are
made as short as possible. To prevent radiation and high
frequency resonance problems, proper layout of the com-
ponents connected to the switch node is essential. B field
(magnetic) radiation is minimized by keeping catch diode,
switch pin, and input bypass capacitor leads as short as
possible. E field radiation is kept low by minimizing the
length and area of all traces connected to the switch pin
and BOOST pin. A ground plane should always be used
under the switcher circuitry to prevent interplane cou-
pling. A suggested layout for the critical components is
shown in Figure 5. Note that the feedback resistors and
compensation components are kept as far as possible
from the switch node. Also note that the high current
ground path of the catch diode and input capacitor are kept
very short and separate from the analog ground line.
The high speed switching current path is shown schemati-
cally in Figure 6. Minimum lead length in this path is
essential to ensure clean switching and low EMI. The path
including the switch, catch diode, and input capacitor is
the only one containing nanosecond rise and fall times. If
you follow this path on the PC layout, you will see that it is
irreducibly short. If you move the diode or input capacitor
IN
R
R
= 12V. Let R
HI
FB
114 5 1 5
25 12 2 38 1 5 5 1 1 5
25 10 41
k
k
2 29
k
2 38 25 3 5
LO
= 25k.
114
380
k
k
k
A
LT1374
15

Related parts for LT1374C