dsPIC33FJ32MC204 Microchip Technology, dsPIC33FJ32MC204 Datasheet - Page 44

no-image

dsPIC33FJ32MC204

Manufacturer Part Number
dsPIC33FJ32MC204
Description
(dsPIC33FJ16MC304 / dsPIC33FJ32MC20x) 16-bit Microcontrollers
Manufacturer
Microchip Technology
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
dsPIC33FJ32MC204-E/PT
Manufacturer:
PANASONIC
Quantity:
12 000
Part Number:
dsPIC33FJ32MC204-E/PT
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
dsPIC33FJ32MC204-E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
dsPIC33FJ32MC204-I
Manufacturer:
MICROCHIP
Quantity:
12 000
Part Number:
dsPIC33FJ32MC204-I/ML
Manufacturer:
Microchip
Quantity:
229
Part Number:
dsPIC33FJ32MC204-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
dsPIC33FJ32MC204-I/PT
0
Part Number:
dsPIC33FJ32MC204T-I/ML
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
dsPIC33FJ32MC204T-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
dsPIC33FJ32MC204T-I/PT
0
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304
3.2.6
In addition to its use as a working register, the W15
register
dsPIC33FJ16MC304 devices is also used as a soft-
ware Stack Pointer. The Stack Pointer always points to
the first available free word and grows from lower to
higher addresses. It predecrements for stack pops and
post-increments for stack pushes, as shown in
Figure 3-4. For a PC push during any CALL instruction,
the MSb of the PC is zero-extended before the push,
ensuring that the MSb is always clear.
The Stack Pointer Limit register (SPLIM) associated
with the Stack Pointer sets an upper address boundary
for the stack. SPLIM is uninitialized at Reset. As is the
case for the Stack Pointer, SPLIM<0> is forced to ‘0’
because all stack operations must be word-aligned.
Whenever an EA is generated using W15 as a source
or destination pointer, the resulting address is
compared with the value in SPLIM. If the contents of
the Stack Pointer (W15) and the SPLIM register are
equal and a push operation is performed, a stack error
trap will not occur. The stack error trap will occur on a
subsequent push operation. For example, to cause a
stack error trap when the stack grows beyond address
0x2000 in RAM, initialize the SPLIM with the value
0x1FFE.
Similarly, a Stack Pointer underflow (stack error) trap is
generated when the Stack Pointer address is found to
be less than 0x0800. This prevents the stack from
interfering with the Special Function Register (SFR)
space.
A write to the SPLIM register should not be immediately
followed by an indirect read operation using W15.
FIGURE 3-4:
DS70283B-page 42
0x0000
Note:
15
000000000
in
SOFTWARE STACK
A PC push during exception processing
concatenates the SRL register to the MSb
of the PC prior to the push.
<Free Word>
the
PC<15:0>
PC<22:16>
dsPIC33FJ32MC202/204
CALL STACK FRAME
0
POP : [--W15]
PUSH : [W15++]
W15 (before CALL)
W15 (after CALL)
and
Preliminary
3.2.7
The dsPIC33F product family supports Data RAM
protection features that enable segments of RAM to be
protected when used in conjunction with Boot and
Secure Code Segment Security. BSRAM (Secure RAM
segment for BS) is accessible only from the Boot
Segment Flash code when enabled. SSRAM (Secure
RAM segment for RAM) is accessible only from the
Secure Segment Flash code when enabled. See
Table 3-1 for an overview of the BSRAM and SSRAM
SFRs.
3.3
The addressing modes shown in Table 3-26 form the
basis of the addressing modes optimized to support the
specific features of individual instructions. The
addressing modes provided in the MAC class of
instructions differ from those in the other instruction
types.
3.3.1
Most file register instructions use a 13-bit address field
(f) to directly address data present in the first 8192
bytes of data memory (near data space). Most file
register instructions employ a working register, W0,
which is denoted as WREG in these instructions. The
destination is typically either the same file register or
WREG (with the exception of the MUL instruction),
which writes the result to a register or register pair. The
MOV instruction allows additional flexibility and can
access the entire data space.
3.3.2
The three-operand MCU instructions are of the form:
Operand 3 = Operand 1 <function> Operand 2
where Operand 1 is always a working register (that is,
the addressing mode can only be register direct), which
is referred to as Wb. Operand 2 can be a W register,
fetched from data memory, or a 5-bit literal. The result
location can be either a W register or a data memory
location.
supported by MCU instructions:
• Register Direct
• Register Indirect
• Register Indirect Post-Modified
• Register Indirect Pre-Modified
• 5-bit or 10-bit Literal
Note:
Instruction Addressing Modes
The
DATA RAM PROTECTION FEATURE
FILE REGISTER INSTRUCTIONS
MCU INSTRUCTIONS
Not all instructions support all the
addressing modes given above. Individual
instructions can support different subsets
of these addressing modes.
following
© 2007 Microchip Technology Inc.
addressing
modes
are

Related parts for dsPIC33FJ32MC204