MT8931CP Zarlink Semiconductor, MT8931CP Datasheet - Page 13

no-image

MT8931CP

Manufacturer Part Number
MT8931CP
Description
Description = 4 Wire Full-duplex 2B+D (192Kb/s) Data Format Isdn S And T Subscriber Network Interface Circuit ;; Package Type = Pdip ;; No. Of Pins = 28
Manufacturer
Zarlink Semiconductor
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MT8931CP
Manufacturer:
MITEL
Quantity:
20 000
Part Number:
MT8931CP1
Manufacturer:
ZARLINK
Quantity:
1 325
Data Sheet
The parallel port on the SNIC allows complete
control of the HDLC transceiver and access to all
data, control and status registers.
registers allows the microprocessor to monitor
incoming data on the S or ST-BUS without
interrupting the normal data flow.
Some registers are classified as asynchronous and
others as synchronous. Synchronous registers are
single-buffered and require synchronous access.
Not all the synchronous registers have the same
access times,
synchronously in the time during which the NDA
signal is low (refer to Fig. 5).
recommended that the user make use of the NDA
signal to access these registers.
synchronous registers use common circuitry, it is
essential that the register be read before being
written. This sequence is important as a write cycle
will overwrite the last data received. These parallel
accesses
Asynchronous registers, on the other hand, can be
accessed at any time.
The data in TE or NT Mode Status Register,
depending upon the mode selected, is always sent
out on the C-channel of DSTo.
microprocessor control mode the user can overwrite
this data by writing to the DSTo C-channel Register.
This access can be done anytime outside the frame
pulse interval of the ST-BUS frame. Data written in
the current ST-BUS frame will only appear in the C-
channel of the following frame.
The least significant bit (B0) of the
Register, selects between the control register or the
diagnostic register. Setting the B0 of the C-channel
Register to ’0’ allow access to the control register.
Setting the LSB of the C-channel Register to ’1’ allow
access to the diagnostic register. The interpretation
of each register is defined in Tables 13 and 14 for NT
mode or Tables 16 and 17 for the TE mode.
It is important to note that in TE mode, the C-channel
Diagnostic Register should be cleared while the
device is not in the active state (IS0, IS1
is accomplished by setting the ClrDia bit of the C-
channel Control Register to 1 until the device is
activated. In serial control mode, the C-channel on
the ST-BUS is loaded into the C-channel Control
Register in every ST-BUS frame; the user should
make sure that a 1 is written to the ClrDia bit in every
frame. However, in parallel control mode the user
needs to set the ClrDia bit only once to keep the
Diagnostic Register cleared. Once full activation is
achieved the Diagnostic Register can be written to in
order to enable the various test functions.
must
but
be
refreshed
all
can be accessed
Therefore,
Reading these
every
However, in
Since the
C-channel
1,1). This
frame.
it is
HDLC Transceiver
The HDLC Transceiver handles the bit oriented
protocol structure and formats the D-channel as per
level 2 of the X.25 packet switching protocol defined
by CCITT. It transmits and receives the packetized
data (information or control) serially in a format
shown
transparency by zero insertion and deletion.
generates and detects the flags, various link channel
states and the abort sequence. Further, it provides a
cyclic redundancy check on the data packets using
the CCITT defined polynomial. In addition, it can
recognize a single byte, dual byte or an all call
address in the received frame.
provision to disable the protocol functions and
provide transparent access to either serial port
through the microprocessor port.
provided by the HDLC include, independent port
selection for transmit and received data (e.g.
transmit on S-Bus and receive from ST-BUS),
selectable 16 or 64 kbit/s D-channel as well as an
HDLC loopback from the transmit to the receive port.
These features are enabled through the HDLC
control registers (see Tables 6 and 7).
HDLC Frame Format
All frames start with an opening flag and end with a
closing flag as shown in Figure 15. Between these
two flags, a frame contains the data and the frame
check sequence (FCS).
i) Flag
The flag is a unique pattern of 8 bits (01111110)
defining the frame boundary. The transmit section
generates the flags and appends them automatically
to the frame to be transmitted. The receive section
searches the incoming packets for flags on a
bit-by-bit
synchronization. The flags are used only to identify
and synchronize the received frame and are not
transferred to the FIFO.
FLAG
Byte
One
in
Figure 15 - Frame Format
basis
Figure
DATA FIELD
n Bytes
(n ≥ 2)
15,
and
while
establishes
Bytes
FCS
Two
There is also a
providing
Other features
FLAG
Byte
One
frame
data
13
It

Related parts for MT8931CP