DS80C410 Maxim, DS80C410 Datasheet - Page 85

no-image

DS80C410

Manufacturer Part Number
DS80C410
Description
The DS80C410/DS80C411 network microcontrollers offer the highest integration available in an 8051 device
Manufacturer
Maxim
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DS80C410-FNY+
Manufacturer:
RENESAS
Quantity:
101
Part Number:
DS80C410-FNY+
Manufacturer:
Maxim
Quantity:
470
Part Number:
DS80C410-FNY+
Manufacturer:
Maxim Integrated
Quantity:
10 000
Task Scheduler
The DS80C410 ROM firmware implements a priority based preemptive task scheduler. Each task created is
represented in a task ring by a corresponding task control block (TCB). The TCB holds critical information specific
to the task, such as the ID, priority, event bit mask, wake-up time, and pointers to state information and next task.
Using a timer, the scheduler is run approximately every 4ms (at 18.432MHz crystal frequency) unless deferred
because another interrupt is in progress. The scheduler supports an unlimited number of tasks and allows addition,
deletion, or modification on the fly. However, one should realize that increasing the number of tasks increases the
time needed by the scheduler to search and prioritize the ring. The High-Speed Microcontroller User’s Guide:
Network Microcontroller Supplement provides greater detail about the task scheduler and its functionality.
Controller Area Network (CAN) Module
The DS80C410 incorporates one CAN controller that is fully compliant with the CAN 2.0B specification. On the
DS80C411, the CAN controller is not available. CAN is a highly robust, high-performance communication protocol
for serial communications. Popular in a wide range of applications including automotive, medical, heating,
ventilation, and industrial control, the CAN architecture allows for the construction of sophisticated networks with a
minimum of external hardware.
The CAN controller supports the use of 11-bit standard or 29-bit extended acceptance identifiers for up to 15
messages, with the standard 8-Byte data field, in each message. Fourteen of the 15 message centers are
programmable in either transmit or receive modes, with the 15th designated as an FIFO-buffered, receive-only
message center to help prevent data overruns. All message centers have two separate 8-bit media masks and
media arbitration fields for incoming message verification. This feature supports the use of higher-level protocols
that use the first and/or second byte of data as a part of the acceptance layer for storing incoming messages. Each
message center can also be programmed independently to test incoming data with or without the use of the global
masks.
Global controls and status registers in the CAN unit allow the microcontroller to evaluate error messages, generate
interrupts, locate and validate new data, establish the CAN bus timing, establish identification mask bits, and verify
the source of individual messages. Each message center is individually equipped with the necessary status and
control bits to establish direction, identification mode (standard or extended), data field size, data status, automatic
remote frame request and acknowledgment, and perform masked or nonmasked identification-acceptance testing.
Communicating with the CAN Module
The microcontroller interface to the CAN modules is divided into two groups of registers. All the global CAN status
and control bits as well as the individual message center control/status registers are located in the SFR map. The
remaining registers associated with the message centers (data identification, identification/arbitration masks, format
and data) are located in MOVX data space. For the DS80C410, the message centers are fixed from FFDB00h –
FFDBFFh.
addressing modes when the CMA bit is set to correctly access the CAN MOVX memory. A special lockout feature
prevents the accidental software corruption of the control, status, and mask registers while a CAN operation is in
progress. Each CAN controller uses a total of 15 message centers. Each message center is composed of four
specific areas that include the following:
1) Four arbitration registers (C0MxAR0-3) that store either the 11-bit or 29-bit arbitration value. These registers
2) A format register (C0MxF) that informs the CAN controller as to the direction (transmit or receive), the number
3) Eight data bytes for storage of 0 to 8 Bytes of data (C0MxD0–7) are located in the MOVX memory map.
4) Message control registers (C0MxC) are located in the SFR memory for fast access.
Each of the message centers is identical with the exception of message center 15. Message center 15 has been
designed as a receive-only center and is also buffered through the use of a two-message FIFO to help prevent
message loss in a message-overrun situation. The receipt of a third message before either of the first two are read
overwrites the second message, leaving the first message undisturbed.
are located in the MOVX memory map.
of data bytes in the message, the identification format (standard or extended), and the optional use of the
identification mask or media mask during message evaluation. This register is located in the MOVX memory
map.
The internal architecture of the DS80C410 requires that the device be in one of the two 24-bit
85 of 102

Related parts for DS80C410