OP495 Analog Devices, OP495 Datasheet - Page 9

no-image

OP495

Manufacturer Part Number
OP495
Description
Quad Rail-to-Rail Operational Amplifier
Manufacturer
Analog Devices
Datasheet

Specifications of OP495

-3db Bandwidth
85kHz
Slew Rate
30mV/µs
Vos
300µV
Ib
20nA
# Opamps Per Pkg
4
Input Noise (nv/rthz)
45nV/rtHz
Vcc-vee
3V to 36V
Isy Per Amplifier
175µA
Packages
DIP,SOIC

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
OP495G
Manufacturer:
AD
Quantity:
5 510
Part Number:
OP495G
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
OP495GS
Manufacturer:
g0ldstqr
Quantity:
475
Part Number:
OP495GS
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
OP495GSZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
OP495GSZ-REEL
Manufacturer:
ADI/亚德诺
Quantity:
20 000
APPLICATIONS
RAIL-TO-RAIL APPLICATION INFORMATION
The OP295/OP495 have a wide common-mode input range
extending from ground to within about 800 mV of the positive
supply. There is a tendency to use the OP295/OP495 in buffer
applications where the input voltage could exceed the common-
mode input range. This can initially appear to work because of
the high input range and rail-to-rail output range. But above the
common-mode input range, the amplifier is, of course, highly
nonlinear. For this reason, there must be some minimal amount
of gain when rail-to-rail output swing is desired. Based on the
input common-mode range, this gain should be at least 1.2.
LOW DROP-OUT REFERENCE
The OP295/OP495 can be used to gain up a 2.5 V or other low
voltage reference to 4.5 V for use with high resolution ADCs
that operate from 5 V only supplies. The circuit in Figure 19
supplies up to 10 mA. Its no-load drop-out voltage is only
20 mV. This circuit supplies over 3.5 mA with a 5 V supply.
LOW NOISE, SINGLE-SUPPLY PREAMPLIFIER
Most single-supply op amps are designed to draw low supply
current at the expense of having higher voltage noise. This tradeoff
may be necessary because the system must be powered by a
battery. However, this condition is worsened because all circuit
resistances tend to be higher; as a result, in addition to the op
amp’s voltage noise, Johnson noise (resistor thermal noise) is
also a significant contributor to the total noise of the system.
The choice of monolithic op amps that combine the character-
istics of low noise and single-supply operation is rather limited.
Most single-supply op amps have noise on the order of 30 nV/√Hz
to 60 nV/√Hz, and single-supply amplifiers with noise below
5 nV/√Hz do not exist.
To achieve both low noise and low supply voltage operation,
discrete designs may provide the best solution. The circuit in
Figure 20 uses the OP295/OP495 rail-to-rail amplifier and a
matched PNP transistor pair—the MAT03—to achieve zero-
in/zero-out single-supply operation with an input voltage noise
of 3.1 nV/√Hz at 100 Hz.
REF43
5V
2
4
6
Figure 19. 4.5 V, Low Drop-Out Reference
OP295/OP495
20kΩ
1/2
0.001µF
+
5V
16kΩ
1µF TO
10Ω
10µF
+
V
OUT
= 4.5V
Rev. G | Page 9 of 16
R5 and R6 set the gain of 1000, making this circuit ideal for
maximizing dynamic range when amplifying low level signals in
single-supply applications. The OP295/OP495 provide rail-to-
rail output swings, allowing this circuit to operate with 0 V to
5 V outputs. Only half of the OP295/OP495 is used, leaving the
other uncommitted op amp for use elsewhere.
The input noise is controlled by the MAT03 transistor pair
and the collector current level. Increasing the collector current
reduces the voltage noise. This particular circuit was tested
with 1.85 mA and 0.5 mA of current. Under these two cases,
the input voltage noise was 3.1 nV/√Hz and 10 nV/√Hz, respect-
ively. The high collector currents do lead to a tradeoff in supply
current, bias current, and current noise. All of these parameters
increase with increasing collector current. For example, typically
the MAT03 has an h
and 3 μA, respectively.
Based on the high bias currents, this circuit is best suited for
applications with low source impedance such as magnetic
pickups or low impedance strain gauges. Furthermore, a high
source impedance degrades the noise performance. For
example, a 1 kΩ resistor generates 4 nV/√Hz of broadband
noise, which is already greater than the noise of the preamp.
The collector current is set by R1 in combination with the LED
and Q2. The LED is a 1.6 V Zener diode that has a temperature
coefficient close to that of the Q2 base-emitter junction, which
provides a constant 1.0 V drop across R1. With R1 equal to
270 Ω, the tail current is 3.7 mA and the collector current is half
that, or 1.85 mA. The value of R1 can be altered to adjust the
collector current. When R1 is changed, R3 and R4 should also
be adjusted. To maintain a common-mode input range that
includes ground, the collectors of the Q1 and Q2 should not go
above 0.5 V; otherwise, they could saturate. Thus, R3 and R4
must be small enough to prevent this condition. Their values
and the overall performance for two different values of R1 are
summarized in Table 6.
V
IN
R2
27kΩ
LED
2
3
1
Figure 20. Low Noise Single-Supply Preamplifier
Q1
R3
510Ω
R7
MAT03
100Ω
R8
2N3906
1500pF
R1
FE
Q2
C1
= 165. This leads to bias currents of 11 μA
Q2
5
7
R4
6
2
3
+
8
4
0.1µF
10µF
+
10kΩ
OP295/OP495
OP295/OP495
R5
1
C2
10µF
10Ω
R6
V
OUT

Related parts for OP495