ATtiny24 Atmel Corporation, ATtiny24 Datasheet - Page 57

no-image

ATtiny24

Manufacturer Part Number
ATtiny24
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny24

Flash (kbytes)
2 Kbytes
Pin Count
14
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
4
Hardware Qtouch Acquisition
No
Max I/o Pins
12
Ext Interrupts
12
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.12
Eeprom (bytes)
128
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny24-15SSZ
Manufacturer:
ATMEL
Quantity:
349
Part Number:
ATtiny24-15SSZ
Manufacturer:
ATTINY
Quantity:
20 000
Part Number:
ATtiny24-20MU
Manufacturer:
AVNET
Quantity:
20 000
Part Number:
ATtiny24-20SSU
Manufacturer:
ATMEL
Quantity:
5 000
Part Number:
ATtiny24-20SSU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny24-20SSUR
Manufacturer:
ATMEL
Quantity:
6 000
Part Number:
ATtiny24A-CCU
Manufacturer:
ATMEL
Quantity:
1 001
Part Number:
ATtiny24A-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny24A-CCUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny24A-MU
Manufacturer:
ATMEL
Quantity:
2 710
Part Number:
ATtiny24A-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATtiny24A-SSFR
Quantity:
1 900
Part Number:
ATtiny24A-SSU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATtiny24A-SSU
Quantity:
12 500
8006K–AVR–10/10
Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.
When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in
positive edge of the clock. In this case, the delay tpd through the synchronizer is one system
clock period.
Figure 10-4. Synchronization when Reading a Software Assigned Pin Value
The following code example shows how to set port A pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 5 as input with a pull-up assigned to port pin 4. The resulting pin values
are read back again, but as previously discussed, a nop instruction is included to be able to read
back the value recently assigned to some of the pins.
Note:
Assembly Code Example
...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi
ldi
out
out
; Insert nop for synchronization
nop
; Read port pins
in
...
Two temporary registers are used to minimize the time from pull-ups are set on pins 0, 1 and 4,
until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.
Figure 10-4 on page
INSTRUCTIONS
r16,(1<<PA4)|(1<<PA1)|(1<<PA0)
r17,(1<<DDA3)|(1<<DDA2)|(1<<DDA1)|(1<<DDA0)
PORTA,r16
DDRA,r17
r16,PINA
SYSTEM CLK
SYNC LATCH
PINxn
r16
r17
57. The out instruction sets the “SYNC LATCH” signal at the
out PORTx, r16
0x00
nop
t
pd
0xFF
in r17, PINx
ATtiny24/44/84
0xFF
57

Related parts for ATtiny24